Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoicoto2 Structured version   Visualization version   GIF version

Theorem hoicoto2 40819
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoicoto2.i (𝜑𝐼:𝑋⟶(ℝ × ℝ))
hoicoto2.a 𝐴 = (𝑘𝑋 ↦ (1st ‘(𝐼𝑘)))
hoicoto2.b 𝐵 = (𝑘𝑋 ↦ (2nd ‘(𝐼𝑘)))
Assertion
Ref Expression
hoicoto2 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Distinct variable groups:   𝑘,𝑋   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem hoicoto2
StepHypRef Expression
1 hoicoto2.i . . . . 5 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
21adantr 481 . . . 4 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
3 simpr 477 . . . 4 ((𝜑𝑘𝑋) → 𝑘𝑋)
42, 3fvovco 39381 . . 3 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
51ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
6 xp1st 7198 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
75, 6syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
87elexd 3214 . . . . . 6 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ V)
9 hoicoto2.a . . . . . . 7 𝐴 = (𝑘𝑋 ↦ (1st ‘(𝐼𝑘)))
109fvmpt2 6291 . . . . . 6 ((𝑘𝑋 ∧ (1st ‘(𝐼𝑘)) ∈ V) → (𝐴𝑘) = (1st ‘(𝐼𝑘)))
113, 8, 10syl2anc 693 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) = (1st ‘(𝐼𝑘)))
1211eqcomd 2628 . . . 4 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) = (𝐴𝑘))
13 xp2nd 7199 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
145, 13syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
1514elexd 3214 . . . . . 6 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ V)
16 hoicoto2.b . . . . . . 7 𝐵 = (𝑘𝑋 ↦ (2nd ‘(𝐼𝑘)))
1716fvmpt2 6291 . . . . . 6 ((𝑘𝑋 ∧ (2nd ‘(𝐼𝑘)) ∈ V) → (𝐵𝑘) = (2nd ‘(𝐼𝑘)))
183, 15, 17syl2anc 693 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) = (2nd ‘(𝐼𝑘)))
1918eqcomd 2628 . . . 4 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) = (𝐵𝑘))
2012, 19oveq12d 6668 . . 3 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) = ((𝐴𝑘)[,)(𝐵𝑘)))
214, 20eqtrd 2656 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
2221ixpeq2dva 7923 1 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cmpt 4729   × cxp 5112  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Xcixp 7908  cr 9935  [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-ixp 7909
This theorem is referenced by:  opnvonmbllem2  40847
  Copyright terms: Public domain W3C validator