HomeHome Metamath Proof Explorer
Theorem List (p. 409 of 426)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 40801-40900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhoidmvval0 40801* The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝑗𝜑    &   𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   (𝜑 → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))       (𝜑 → (𝐴(𝐿𝑋)𝐵) = 0)
 
Theoremhoiprodp1 40802* The dimensional volume of a half-open interval with dimension 𝑛 + 1. Used in the first equality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑌 ∈ Fin)    &   (𝜑𝑍𝑉)    &   (𝜑 → ¬ 𝑍𝑌)    &   𝑋 = (𝑌 ∪ {𝑍})    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐺 = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))       (𝜑 → (𝐴(𝐿𝑋)𝐵) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
 
Theoremsge0hsphoire 40803* If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑌 ∈ Fin)    &   (𝜑𝑍 ∈ (𝑊𝑌))    &   𝑊 = (𝑌 ∪ {𝑍})    &   (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑊))    &   (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑊))    &   (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)    &   𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))    &   (𝜑𝑆 ∈ ℝ)       (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
 
Theoremhoidmvval0b 40804* The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)       (𝜑 → (𝐴(𝐿𝑋)𝐴) = 0)
 
Theoremhoidmv1lelem1 40805* The supremum of 𝑈 belongs to 𝑈. This is the last part of step (a) and the whole step (b) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐶:ℕ⟶ℝ)    &   (𝜑𝐷:ℕ⟶ℝ)    &   (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)    &   𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}    &   𝑆 = sup(𝑈, ℝ, < )       (𝜑 → (𝑆𝑈𝐴𝑈 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑈 𝑦𝑥))
 
Theoremhoidmv1lelem2 40806* This is the contradiction proven in step (c) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶:ℕ⟶ℝ)    &   (𝜑𝐷:ℕ⟶ℝ)    &   (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)    &   𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}    &   (𝜑𝑆𝑈)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆 < 𝐵)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑𝑆 ∈ ((𝐶𝐾)[,)(𝐷𝐾)))    &   𝑀 = if((𝐷𝐾) ≤ 𝐵, (𝐷𝐾), 𝐵)       (𝜑 → ∃𝑢𝑈 𝑆 < 𝑢)
 
Theoremhoidmv1lelem3 40807* The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the non-empty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐶:ℕ⟶ℝ)    &   (𝜑𝐷:ℕ⟶ℝ)    &   (𝜑 → (𝐴[,)𝐵) ⊆ 𝑗 ∈ ℕ ((𝐶𝑗)[,)(𝐷𝑗)))    &   (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))) ∈ ℝ)    &   𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)if((𝐷𝑗) ≤ 𝑧, (𝐷𝑗), 𝑧)))))}    &   𝑆 = sup(𝑈, ℝ, < )       (𝜑 → (𝐵𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶𝑗)[,)(𝐷𝑗))))))
 
Theoremhoidmv1le 40808* The dimensional volume of a 1-dimensional half-open interval is less than or equal to the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is one of the two base cases of the induction of Lemma 115B of [Fremlin1] p. 29 (the other base case is the 0-dimensional case). This proof of the 1-dimensional case is given in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑍𝑉)    &   𝑋 = {𝑍}    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑋))    &   (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑋))    &   (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))       (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
 
Theoremhoidmvlelem1 40809* The supremum of 𝑈 belongs to 𝑈. Step (c) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝑌𝑋)    &   (𝜑𝑍 ∈ (𝑋𝑌))    &   𝑊 = (𝑌 ∪ {𝑍})    &   (𝜑𝐴:𝑊⟶ℝ)    &   (𝜑𝐵:𝑊⟶ℝ)    &   (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑊))    &   (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑊))    &   (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)    &   𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))    &   𝐺 = ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌))    &   (𝜑𝐸 ∈ ℝ+)    &   𝑈 = {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))}    &   𝑆 = sup(𝑈, ℝ, < )    &   (𝜑 → (𝐴𝑍) < (𝐵𝑍))       (𝜑𝑆𝑈)
 
Theoremhoidmvlelem2 40810* This is the contradiction proven in step (d) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝑌𝑋)    &   (𝜑𝑍 ∈ (𝑋𝑌))    &   𝑊 = (𝑌 ∪ {𝑍})    &   (𝜑𝐴:𝑊⟶ℝ)    &   (𝜑𝐵:𝑊⟶ℝ)    &   (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑊))    &   𝐹 = (𝑦𝑌 ↦ 0)    &   𝐽 = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐶𝑗) ↾ 𝑌), 𝐹))    &   (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑊))    &   𝐾 = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐷𝑗) ↾ 𝑌), 𝐹))    &   (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)    &   𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))    &   𝐺 = ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌))    &   (𝜑𝐸 ∈ ℝ+)    &   𝑈 = {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))}    &   (𝜑𝑆𝑈)    &   (𝜑𝑆 < (𝐵𝑍))    &   𝑃 = (𝑗 ∈ ℕ ↦ ((𝐽𝑗)(𝐿𝑌)(𝐾𝑗)))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)(𝑃𝑗)))    &   𝑂 = ran (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))} ↦ ((𝐷𝑖)‘𝑍))    &   𝑉 = ({(𝐵𝑍)} ∪ 𝑂)    &   𝑄 = inf(𝑉, ℝ, < )       (𝜑 → ∃𝑢𝑈 𝑆 < 𝑢)
 
Theoremhoidmvlelem3 40811* This is the contradiction proven in step (d) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝑌𝑋)    &   (𝜑𝑍 ∈ (𝑋𝑌))    &   𝑊 = (𝑌 ∪ {𝑍})    &   (𝜑𝐴:𝑊⟶ℝ)    &   (𝜑𝐵:𝑊⟶ℝ)    &   ((𝜑𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘))    &   𝐹 = (𝑦𝑌 ↦ 0)    &   (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑊))    &   𝐽 = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐶𝑗) ↾ 𝑌), 𝐹))    &   (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑊))    &   𝐾 = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐷𝑗) ↾ 𝑌), 𝐹))    &   (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)    &   𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))    &   𝐺 = ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌))    &   (𝜑𝐸 ∈ ℝ+)    &   𝑈 = {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))}    &   (𝜑𝑆𝑈)    &   (𝜑𝑆 < (𝐵𝑍))    &   𝑃 = (𝑗 ∈ ℕ ↦ ((𝐽𝑗)(𝐿𝑌)(𝐾𝑗)))    &   (𝜑 → ∀𝑒 ∈ (ℝ ↑𝑚 𝑌)∀𝑓 ∈ (ℝ ↑𝑚 𝑌)∀𝑔 ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)∀ ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))    &   (𝜑X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))    &   𝑂 = (𝑥X𝑘𝑌 ((𝐴𝑘)[,)(𝐵𝑘)) ↦ (𝑘𝑊 ↦ if(𝑘𝑌, (𝑥𝑘), 𝑆)))       (𝜑 → ∃𝑢𝑈 𝑆 < 𝑢)
 
Theoremhoidmvlelem4 40812* The dimensional volume of a multidimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Induction step of Lemma 115B of [Fremlin1] p. 29, case nonempty interval and dimension of the space greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝑌𝑋)    &   (𝜑𝑌 ≠ ∅)    &   (𝜑𝑍 ∈ (𝑋𝑌))    &   𝑊 = (𝑌 ∪ {𝑍})    &   (𝜑𝐴:𝑊⟶ℝ)    &   (𝜑𝐵:𝑊⟶ℝ)    &   ((𝜑𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘))    &   (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑊))    &   (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑊))    &   (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)    &   𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))    &   𝐺 = ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌))    &   (𝜑𝐸 ∈ ℝ+)    &   𝑈 = {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))}    &   𝑆 = sup(𝑈, ℝ, < )    &   (𝜑 → ∀𝑒 ∈ (ℝ ↑𝑚 𝑌)∀𝑓 ∈ (ℝ ↑𝑚 𝑌)∀𝑔 ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)∀ ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))    &   (𝜑X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))       (𝜑 → (𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))))
 
Theoremhoidmvlelem5 40813* The dimensional volume of a multidimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Induction step of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝑌𝑋)    &   (𝜑𝑍 ∈ (𝑋𝑌))    &   𝑊 = (𝑌 ∪ {𝑍})    &   (𝜑𝐴:𝑊⟶ℝ)    &   (𝜑𝐵:𝑊⟶ℝ)    &   (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑊))    &   (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑊))    &   (𝜑 → ∀𝑒 ∈ (ℝ ↑𝑚 𝑌)∀𝑓 ∈ (ℝ ↑𝑚 𝑌)∀𝑔 ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)∀ ∈ ((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))    &   (𝜑X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))    &   (𝜑𝑌 ≠ ∅)       (𝜑 → (𝐴(𝐿𝑊)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
 
Theoremhoidmvle 40814* The dimensional volume of a n-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑋))    &   (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑋))    &   (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))       (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
 
Theoremovnhoilem1 40815* The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. First part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))    &   𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}    &   𝐻 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))       (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
 
Theoremovnhoilem2 40816* The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. Second part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))    &   𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}    &   𝐹 = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))    &   𝑆 = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))       (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
 
Theoremovnhoi 40817* The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))    &   𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))       (𝜑 → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
 
Theoremdmovn 40818 The domain of the Lebesgue outer measure is the power set of the n-dimensional Real numbers. Step (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30 (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)       (𝜑 → dom (voln*‘𝑋) = 𝒫 (ℝ ↑𝑚 𝑋))
 
Theoremhoicoto2 40819* The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼:𝑋⟶(ℝ × ℝ))    &   𝐴 = (𝑘𝑋 ↦ (1st ‘(𝐼𝑘)))    &   𝐵 = (𝑘𝑋 ↦ (2nd ‘(𝐼𝑘)))       (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
 
Theoremdmvon 40820 Lebesgue measurable n-dimensional subsets of Reals. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)       (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
 
Theoremhoi2toco 40821* The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝑘𝜑    &   𝐼 = (𝑘𝑋 ↦ ⟨(𝐴𝑘), (𝐵𝑘)⟩)       (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
 
Theoremhoidifhspval 40822* 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))    &   (𝜑𝑌 ∈ ℝ)       (𝜑 → (𝐷𝑌) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝑎𝑘), (𝑎𝑘), 𝑌), (𝑎𝑘)))))
 
Theoremhspval 40823* The value of the half-space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐻 = (𝑥 ∈ Fin ↦ (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝐼𝑋)    &   (𝜑𝑌 ∈ ℝ)       (𝜑 → (𝐼(𝐻𝑋)𝑌) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
 
Theoremovnlecvr2 40824* Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑋))    &   (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑋))    &   (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))    &   𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))       (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
 
Theoremovncvr2 40825* 𝐵 and 𝑇 are the left and right side of a cover of 𝐴. This cover is made of n-dimensional half open intervals, and approximates the n-dimensional Lebesgue outer volume of 𝐴. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))    &   (𝜑𝐸 ∈ ℝ+)    &   𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})    &   𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))    &   𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))    &   (𝜑𝐼 ∈ ((𝐷𝐴)‘𝐸))    &   𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝐼𝑗)‘𝑘))))    &   𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝐼𝑗)‘𝑘))))       (𝜑 → (((𝐵:ℕ⟶(ℝ ↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
 
Theoremdmovnsal 40826 The domain of the Lebesgue measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)       (𝜑𝑆 ∈ SAlg)
 
Theoremunidmovn 40827 Base set of the n-dimensional Lebesgue outer measure (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)       (𝜑 dom (voln*‘𝑋) = (ℝ ↑𝑚 𝑋))
 
Theoremrrnmbl 40828 The set of n-dimensional Real numbers is Lebesgue measurable. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)       (𝜑 → (ℝ ↑𝑚 𝑋) ∈ dom (voln‘𝑋))
 
Theoremhoidifhspval2 40829* 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝑋𝑉)    &   (𝜑𝐴:𝑋⟶ℝ)       (𝜑 → ((𝐷𝑌)‘𝐴) = (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘))))
 
Theoremhspdifhsp 40830* A n-dimensional half-open interval is the intersection of the difference of half spaces. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))       (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
 
Theoremunidmvon 40831 Base set of the n-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)       (𝜑 𝑆 = (ℝ ↑𝑚 𝑋))
 
Theoremhoidifhspf 40832* 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝑋𝑉)    &   (𝜑𝐴:𝑋⟶ℝ)       (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
 
Theoremhoidifhspval3 40833* 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝑋𝑉)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐽𝑋)       (𝜑 → (((𝐷𝑌)‘𝐴)‘𝐽) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴𝐽), (𝐴𝐽), 𝑌), (𝐴𝐽)))
 
Theoremhoidifhspdmvle 40834* The dimensional volume of the difference of a half-open interval and a half-space is less than or equal to the dimensional volume of the whole half-open interval. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   (𝜑𝐾𝑋)    &   𝐷 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))    &   (𝜑𝑌 ∈ ℝ)       (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵))
 
Theoremvoncmpl 40835 The Lebesgue measure is complete. See Definition 112Df of [Fremlin1] p. 19. This is an observation written after Definition 115E of [Fremlin1] p. 31 (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)    &   (𝜑𝐸 ∈ dom (voln‘𝑋))    &   (𝜑 → ((voln‘𝑋)‘𝐸) = 0)    &   (𝜑𝐹𝐸)       (𝜑𝐹𝑆)
 
Theoremhoiqssbllem1 40836* The center of the n-dimensional ball belongs to the half-open interval. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝑖𝜑    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))    &   (𝜑𝐶:𝑋⟶ℝ)    &   (𝜑𝐷:𝑋⟶ℝ)    &   (𝜑𝐸 ∈ ℝ+)    &   ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))    &   ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))       (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
 
Theoremhoiqssbllem2 40837* The center of the n-dimensional ball belongs to the half-open interval. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝑖𝜑    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))    &   (𝜑𝐶:𝑋⟶ℝ)    &   (𝜑𝐷:𝑋⟶ℝ)    &   (𝜑𝐸 ∈ ℝ+)    &   ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))    &   ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))       (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
 
Theoremhoiqssbllem3 40838* A n-dimensional ball contains a non-empty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))    &   (𝜑𝐸 ∈ ℝ+)       (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
 
Theoremhoiqssbl 40839* A n-dimensional ball contains a non-empty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))    &   (𝜑𝐸 ∈ ℝ+)       (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
 
Theoremhspmbllem1 40840* Any half-space of the n-dimensional Real numbers is Lebesgue measurable. This is Step (a) of Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐾𝑋)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))    &   𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))       (𝜑 → (𝐴(𝐿𝑋)𝐵) = ((𝐴(𝐿𝑋)((𝑇𝑌)‘𝐵)) +𝑒 (((𝑆𝑌)‘𝐴)(𝐿𝑋)𝐵)))
 
Theoremhspmbllem2 40841* Any half-space of the n-dimensional Real numbers is Lebesgue measurable. This is Step (b) of Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝐾𝑋)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑋))    &   (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑋))    &   (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))    &   (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))    &   (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)    &   (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)    &   (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)    &   𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))    &   𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))    &   𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))       (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))
 
Theoremhspmbllem3 40842* Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. This proof handles the non-trivial cases (nonzero dimension and finite outer measure) (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝐾𝑋)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)    &   (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))    &   𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})    &   𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))    &   𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))    &   𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑘))))    &   𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑘))))       (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
 
Theoremhspmbl 40843* Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝐾𝑋)    &   (𝜑𝑌 ∈ ℝ)       (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ dom (voln‘𝑋))
 
Theoremhoimbllem 40844* Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   𝑆 = dom (voln‘𝑋)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))       (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
 
Theoremhoimbl 40845* Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)       (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∈ 𝑆)
 
Theoremopnvonmbllem1 40846* The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝑖𝜑    &   (𝜑𝑋𝑉)    &   (𝜑𝐶:𝑋⟶ℚ)    &   (𝜑𝐷:𝑋⟶ℚ)    &   (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐵)    &   (𝜑𝐵𝐺)    &   (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))    &   𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}    &   𝐻 = (𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)       (𝜑 → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
 
Theoremopnvonmbllem2 40847* An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)    &   (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))    &   𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}       (𝜑𝐺𝑆)
 
Theoremopnvonmbl 40848 An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)    &   (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))       (𝜑𝐺𝑆)
 
Theoremopnssborel 40849 Open sets of a generalized real Euclidean space are Borel sets (notice that this theorem is even more general, because 𝑋 is not required to be a set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝐴 = (TopOpen‘(ℝ^‘𝑋))    &   𝐵 = (SalGen‘𝐴)       𝐴𝐵
 
Theoremborelmbl 40850 All Borel subsets of the n-dimensional Real numbers are Lebesgue measurable. This is Proposition 115G (b) of [Fremlin1] p. 32. See also Definition 111G (d) of [Fremlin1] p. 13. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)    &   𝐵 = (SalGen‘(TopOpen‘(ℝ^‘𝑋)))       (𝜑𝐵𝑆)
 
Theoremvolicorege0 40851 The Lebesgue measure of a left-closed right-open interval with real bounds, is a nonnegative real number. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) ∈ (0[,)+∞))
 
Theoremisvonmbl 40852* The predicate "𝐴 is measurable w.r.t. the n-dimensional Lebesgue measure". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥𝐴 and 𝑥𝐴 sum up to the measure of 𝑥. Definition 114E of [Fremlin1] p. 25. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝑋 ∈ Fin)       (𝜑 → (𝐸 ∈ dom (voln‘𝑋) ↔ (𝐸 ⊆ (ℝ ↑𝑚 𝑋) ∧ ∀𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋)(((voln*‘𝑋)‘(𝑎𝐸)) +𝑒 ((voln*‘𝑋)‘(𝑎𝐸))) = ((voln*‘𝑋)‘𝑎))))
 
Theoremmblvon 40853 The n-dimensional Lebesgue measure of a measurable set is the same as its n-dimensional Lebesgue outer measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ∈ dom (voln‘𝑋))       (𝜑 → ((voln‘𝑋)‘𝐴) = ((voln*‘𝑋)‘𝐴))
 
Theoremvonmblss 40854 n-dimensional Lebesgue measurable sets are subsets of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝑋 ∈ Fin)       (𝜑 → dom (voln‘𝑋) ⊆ 𝒫 (ℝ ↑𝑚 𝑋))
 
Theoremvolico2 40855 The measure of left closed, right open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴𝐵, (𝐵𝐴), 0))
 
Theoremvonmblss2 40856 n-dimensional Lebesgue measurable sets are subsets of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑌 ∈ dom (voln‘𝑋))       (𝜑𝑌 ⊆ (ℝ ↑𝑚 𝑋))
 
Theoremovolval2lem 40857* The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))       (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐹)) = ran (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
 
Theoremovolval2 40858* The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. See ovolval 23242 for an alternative expression. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴 ⊆ ℝ)    &   𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}       (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
 
Theoremovnsubadd2lem 40859* (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))    &   (𝜑𝐵 ⊆ (ℝ ↑𝑚 𝑋))    &   𝐶 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))       (𝜑 → ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
 
Theoremovnsubadd2 40860 (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))    &   (𝜑𝐵 ⊆ (ℝ ↑𝑚 𝑋))       (𝜑 → ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
 
Theoremovolval3 40861* The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^ and vol ∘ (,). See ovolval 23242 and ovolval2 40858 for alternative expressions. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴 ⊆ ℝ)    &   𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}       (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
 
Theoremovnsplit 40862 The n-dimensional Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))       (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (((voln*‘𝑋)‘(𝐴𝐵)) +𝑒 ((voln*‘𝑋)‘(𝐴𝐵))))
 
Theoremovolval4lem1 40863* |- ( ( ph /\ n e. A ) -> ( ( (,) o. G ) 𝑛) = (((,) ∘ 𝐹) n ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐹:ℕ⟶(ℝ* × ℝ*))    &   𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)    &   𝐴 = {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))}       (𝜑 → ( ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺))))
 
Theoremovolval4lem2 40864* The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 40861, but here 𝑓 is may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴 ⊆ ℝ)    &   𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}    &   𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)       (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
 
Theoremovolval4 40865* The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 40861, but here 𝑓 may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴 ⊆ ℝ)    &   𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}       (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
 
Theoremovolval5lem1 40866* |- ( ph -> ( sum^ (𝑛 ∈ ℕ ↦ (vol ( ( A - ( W / ( 2 ^ n ) ) ) (,) B ) ) ) ) <_ ( ( sum^ (𝑛 ∈ ℕ ↦ (vol ( A [,) B ) ) ) ) +e W ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021.)
((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)    &   ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)    &   (𝜑𝑊 ∈ ℝ+)    &   𝐶 = {𝑛 ∈ ℕ ∣ 𝐴 < 𝐵}       (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
 
Theoremovolval5lem2 40867* |- ( ( ph /\ n e. NN ) -> <. ( ( 1st (𝐹 n ) ) - ( W / ( 2 ^ n ) ) ) , ( 2nd (𝐹 n ) ) >. e. ( RR X. RR ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}    &   (𝜑𝑌 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))    &   𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))    &   (𝜑𝐹:ℕ⟶(ℝ × ℝ))    &   (𝜑𝐴 ran ([,) ∘ 𝐹))    &   (𝜑𝑊 ∈ ℝ+)    &   𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩)       (𝜑 → ∃𝑧𝑄 𝑧 ≤ (𝑌 +𝑒 𝑊))
 
Theoremovolval5lem3 40868* The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}    &   𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}       inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < )
 
Theoremovolval5 40869* The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴 ⊆ ℝ)    &   𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}       (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
 
Theoremovnovollem1 40870* if 𝐹 is a cover of 𝐵 in , then 𝐼 is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))    &   𝐼 = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝐹𝑗)⟩})    &   (𝜑𝐵 ran ([,) ∘ 𝐹))    &   (𝜑𝐵𝑊)    &   (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))       (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
 
Theoremovnovollem2 40871* if 𝐼 is a cover of (𝐵𝑚 {𝐴}) in ℝ^1, then 𝐹 is the corresponding cover in the reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐼 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ))    &   (𝜑 → (𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))    &   (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))    &   𝐹 = (𝑗 ∈ ℕ ↦ ((𝐼𝑗)‘𝐴))       (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
 
Theoremovnovollem3 40872* The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵 ⊆ ℝ)    &   𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}    &   𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}       (𝜑 → ((voln*‘{𝐴})‘(𝐵𝑚 {𝐴})) = (vol*‘𝐵))
 
Theoremovnovol 40873 The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵 ⊆ ℝ)       (𝜑 → ((voln*‘{𝐴})‘(𝐵𝑚 {𝐴})) = (vol*‘𝐵))
 
Theoremvonvolmbllem 40874* If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵 ⊆ ℝ)    &   (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))    &   (𝜑𝑋 ⊆ (ℝ ↑𝑚 {𝐴}))    &   𝑌 = 𝑓𝑋 ran 𝑓       (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑋))
 
Theoremvonvolmbl 40875 A subset of Real numbers is Lebesgue measurable if and only if its corresponding 1-dimensional set is measurable w.r.t. the 1-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵 ⊆ ℝ)       (𝜑 → ((𝐵𝑚 {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))
 
Theoremvonvol 40876 The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵 ∈ dom vol)       (𝜑 → ((voln‘{𝐴})‘(𝐵𝑚 {𝐴})) = (vol‘𝐵))
 
Theoremvonvolmbl2 40877* A subset 𝑋 of the space of 1-dimensional Real numbers is Lebesgue measurable if and only if its projection 𝑌 on the Real numbers is Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑓𝑌    &   (𝜑𝐴𝑉)    &   (𝜑𝑋 ⊆ (ℝ ↑𝑚 {𝐴}))    &   𝑌 = 𝑓𝑋 ran 𝑓       (𝜑 → (𝑋 ∈ dom (voln‘{𝐴}) ↔ 𝑌 ∈ dom vol))
 
Theoremvonvol2 40878* The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑓𝑌    &   (𝜑𝐴𝑉)    &   (𝜑𝑋 ∈ dom (voln‘{𝐴}))    &   𝑌 = 𝑓𝑋 ran 𝑓       (𝜑 → ((voln‘{𝐴})‘𝑋) = (vol‘𝑌))
 
Theoremhoimbl2 40879* Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑘𝜑    &   (𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)    &   ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)    &   ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)       (𝜑X𝑘𝑋 (𝐴[,)𝐵) ∈ 𝑆)
 
Theoremvoncl 40880 The Lebesgue measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)    &   (𝜑𝐴𝑆)       (𝜑 → ((voln‘𝑋)‘𝐴) ∈ (0[,]+∞))
 
Theoremvonhoi 40881* The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). A direct consequence of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))    &   𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))       (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
 
Theoremvonxrcl 40882 The Lebesgue measure of a set is an extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)    &   (𝜑𝐴𝑆)       (𝜑 → ((voln‘𝑋)‘𝐴) ∈ ℝ*)
 
Theoremioosshoi 40883 A n-dimensional open interval is a subset of the half-open interval with the same bounds. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
X𝑘𝑋 (𝐴(,)𝐵) ⊆ X𝑘𝑋 (𝐴[,)𝐵)
 
Theoremvonn0hoi 40884* The Lebesgue outer measure of a multidimensional half-open interval when the dimension of the space is nonzero. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))       (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
 
Theoremvon0val 40885 The Lebesgue measure (for the zero dimensional space of reals) of every measurable set is zero. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝐴 ∈ dom (voln‘∅))       (𝜑 → ((voln‘∅)‘𝐴) = 0)
 
Theoremvonhoire 40886* The Lebesgue measure of a n-dimensional half-open interval is a real number. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑘𝜑    &   (𝜑𝑋 ∈ Fin)    &   ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)    &   ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)       (𝜑 → ((voln‘𝑋)‘X𝑘𝑋 (𝐴[,)𝐵)) ∈ ℝ)
 
Theoremiinhoiicclem 40887* A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑘𝜑    &   ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)    &   ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)    &   (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))       (𝜑𝐹X𝑘𝑋 (𝐴[,]𝐵))
 
Theoremiinhoiicc 40888* A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑘𝜑    &   ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)    &   ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)       (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,]𝐵))
 
Theoremiunhoiioolem 40889* A n-dimensional open interval expressed as the indexed union of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑘𝜑    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≠ ∅)    &   ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)    &   ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)    &   (𝜑𝐹X𝑘𝑋 (𝐴(,)𝐵))    &   𝐶 = inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )       (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
 
Theoremiunhoiioo 40890* A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑘𝜑    &   (𝜑𝑋 ∈ Fin)    &   ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)    &   ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)       (𝜑 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
 
Theoremioovonmbl 40891* Any n-dimensional open interval is Lebesgue measurable. This is the first statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)    &   (𝜑𝐴:𝑋⟶ℝ*)    &   (𝜑𝐵:𝑋⟶ℝ*)       (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ 𝑆)
 
Theoremiccvonmbllem 40892* Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))    &   𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))       (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
 
Theoremiccvonmbl 40893* Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   𝑆 = dom (voln‘𝑋)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)       (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
 
Theoremvonioolem1 40894* The sequence of the measures of the half-open intervals converges to the measure of their union. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   (𝜑𝑋 ≠ ∅)    &   ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))    &   𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))    &   𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))    &   𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))    &   𝑇 = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 ((𝐵𝑘) − ((𝐶𝑛)‘𝑘)))    &   𝐸 = inf(ran (𝑘𝑋 ↦ ((𝐵𝑘) − (𝐴𝑘))), ℝ, < )    &   𝑁 = ((⌊‘(1 / 𝐸)) + 1)    &   𝑍 = (ℤ𝑁)       (𝜑𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
 
Theoremvonioolem2 40895* The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   (𝜑𝑋 ≠ ∅)    &   ((𝜑𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))    &   𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))    &   𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))    &   𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 (((𝐶𝑛)‘𝑘)[,)(𝐵𝑘)))       (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
 
Theoremvonioo 40896* The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))    &   𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))       (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
 
Theoremvonicclem1 40897* The sequence of the measures of the half-open intervals converges to the measure of their intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   (𝜑𝑋 ≠ ∅)    &   ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))    &   𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))    &   𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))    &   𝑆 = (𝑛 ∈ ℕ ↦ ((voln‘𝑋)‘(𝐷𝑛)))       (𝜑𝑆 ⇝ ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
 
Theoremvonicclem2 40898* The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   (𝜑𝑋 ≠ ∅)    &   ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))    &   𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))    &   𝐶 = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))    &   𝐷 = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)((𝐶𝑛)‘𝑘)))       (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
 
Theoremvonicc 40899* The n-dimensional Lebesgue measure of a closed interval. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴:𝑋⟶ℝ)    &   (𝜑𝐵:𝑋⟶ℝ)    &   𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))    &   𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))       (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
 
Theoremsnvonmbl 40900 A n-dimensional singleton is Lebesgue measurable. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝐴 ∈ (ℝ ↑𝑚 𝑋))       (𝜑 → {𝐴} ∈ dom (voln‘𝑋))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >