Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem2 Structured version   Visualization version   GIF version

Theorem opnvonmbllem2 40847
Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem2.x (𝜑𝑋 ∈ Fin)
opnvonmbllem2.n 𝑆 = dom (voln‘𝑋)
opnvonmbllem2.g (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))
opnvonmbl.k 𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
Assertion
Ref Expression
opnvonmbllem2 (𝜑𝐺𝑆)
Distinct variable groups:   ,𝐺,𝑖   ,𝐾,𝑖   𝑆,,𝑖   ,𝑋,𝑖   𝜑,,𝑖

Proof of Theorem opnvonmbllem2
Dummy variables 𝑥 𝑘 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opnvonmbllem2.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
2 eqid 2622 . . . . . . . . . . . 12 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
32rrxmetfi 40507 . . . . . . . . . . 11 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)))
41, 3syl 17 . . . . . . . . . 10 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)))
5 metxmet 22139 . . . . . . . . . 10 ((dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
64, 5syl 17 . . . . . . . . 9 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
76adantr 481 . . . . . . . 8 ((𝜑𝑥𝐺) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
8 opnvonmbllem2.g . . . . . . . . . 10 (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))
9 eqid 2622 . . . . . . . . . . . . . 14 (ℝ^‘𝑋) = (ℝ^‘𝑋)
109rrxval 23175 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → (ℝ^‘𝑋) = (toℂHil‘(ℝfld freeLMod 𝑋)))
111, 10syl 17 . . . . . . . . . . . 12 (𝜑 → (ℝ^‘𝑋) = (toℂHil‘(ℝfld freeLMod 𝑋)))
1211fveq2d 6195 . . . . . . . . . . 11 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))))
13 ovex 6678 . . . . . . . . . . . . 13 (ℝfld freeLMod 𝑋) ∈ V
14 eqid 2622 . . . . . . . . . . . . . 14 (toℂHil‘(ℝfld freeLMod 𝑋)) = (toℂHil‘(ℝfld freeLMod 𝑋))
15 eqid 2622 . . . . . . . . . . . . . 14 (dist‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))
16 eqid 2622 . . . . . . . . . . . . . 14 (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋)))
1714, 15, 16tchtopn 23025 . . . . . . . . . . . . 13 ((ℝfld freeLMod 𝑋) ∈ V → (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))))
1813, 17ax-mp 5 . . . . . . . . . . . 12 (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋))))
1918a1i 11 . . . . . . . . . . 11 (𝜑 → (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))))
2011eqcomd 2628 . . . . . . . . . . . . 13 (𝜑 → (toℂHil‘(ℝfld freeLMod 𝑋)) = (ℝ^‘𝑋))
2120fveq2d 6195 . . . . . . . . . . . 12 (𝜑 → (dist‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (dist‘(ℝ^‘𝑋)))
2221fveq2d 6195 . . . . . . . . . . 11 (𝜑 → (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))) = (MetOpen‘(dist‘(ℝ^‘𝑋))))
2312, 19, 223eqtrd 2660 . . . . . . . . . 10 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘(dist‘(ℝ^‘𝑋))))
248, 23eleqtrd 2703 . . . . . . . . 9 (𝜑𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))))
2524adantr 481 . . . . . . . 8 ((𝜑𝑥𝐺) → 𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))))
26 simpr 477 . . . . . . . 8 ((𝜑𝑥𝐺) → 𝑥𝐺)
27 eqid 2622 . . . . . . . . 9 (MetOpen‘(dist‘(ℝ^‘𝑋))) = (MetOpen‘(dist‘(ℝ^‘𝑋)))
2827mopni2 22298 . . . . . . . 8 (((dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)) ∧ 𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))) ∧ 𝑥𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
297, 25, 26, 28syl3anc 1326 . . . . . . 7 ((𝜑𝑥𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
301ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ Fin)
31 eqid 2622 . . . . . . . . . . . . . . . . . 18 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
3231rrxtoponfi 40511 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑𝑚 𝑋)))
331, 32syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑𝑚 𝑋)))
34 toponss 20731 . . . . . . . . . . . . . . . 16 (((TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑𝑚 𝑋)) ∧ 𝐺 ∈ (TopOpen‘(ℝ^‘𝑋))) → 𝐺 ⊆ (ℝ ↑𝑚 𝑋))
3533, 8, 34syl2anc 693 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (ℝ ↑𝑚 𝑋))
3635adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → 𝐺 ⊆ (ℝ ↑𝑚 𝑋))
3736, 26sseldd 3604 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → 𝑥 ∈ (ℝ ↑𝑚 𝑋))
3837adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑥 ∈ (ℝ ↑𝑚 𝑋))
39 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
4030, 38, 39hoiqssbl 40839 . . . . . . . . . . 11 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
41403adant3 1081 . . . . . . . . . 10 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
42 nfv 1843 . . . . . . . . . . . . . . . 16 𝑖(𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
43 nfv 1843 . . . . . . . . . . . . . . . 16 𝑖(𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋))
44 nfcv 2764 . . . . . . . . . . . . . . . . . 18 𝑖𝑥
45 nfixp1 7928 . . . . . . . . . . . . . . . . . 18 𝑖X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖))
4644, 45nfel 2777 . . . . . . . . . . . . . . . . 17 𝑖 𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖))
47 nfcv 2764 . . . . . . . . . . . . . . . . . 18 𝑖(𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)
4845, 47nfss 3596 . . . . . . . . . . . . . . . . 17 𝑖X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)
4946, 48nfan 1828 . . . . . . . . . . . . . . . 16 𝑖(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))
5042, 43, 49nf3an 1831 . . . . . . . . . . . . . . 15 𝑖((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
511adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → 𝑋 ∈ Fin)
52513ad2ant1 1082 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑋 ∈ Fin)
53 elmapi 7879 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ (ℚ ↑𝑚 𝑋) → 𝑐:𝑋⟶ℚ)
5453adantr 481 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → 𝑐:𝑋⟶ℚ)
55543ad2ant2 1083 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑐:𝑋⟶ℚ)
56 elmapi 7879 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (ℚ ↑𝑚 𝑋) → 𝑑:𝑋⟶ℚ)
5756adantl 482 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → 𝑑:𝑋⟶ℚ)
58573ad2ant2 1083 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑑:𝑋⟶ℚ)
59 simp3r 1090 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))
60 simp1r 1086 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
61 simp3l 1089 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)))
62 opnvonmbl.k . . . . . . . . . . . . . . 15 𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
63 eqid 2622 . . . . . . . . . . . . . . 15 (𝑖𝑋 ↦ ⟨(𝑐𝑖), (𝑑𝑖)⟩) = (𝑖𝑋 ↦ ⟨(𝑐𝑖), (𝑑𝑖)⟩)
6450, 52, 55, 58, 59, 60, 61, 62, 63opnvonmbllem1 40846 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
65643exp 1264 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
6665adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
67663adant2 1080 . . . . . . . . . . 11 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
6867rexlimdvv 3037 . . . . . . . . . 10 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖)))
6941, 68mpd 15 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
70693exp 1264 . . . . . . . 8 ((𝜑𝑥𝐺) → (𝑒 ∈ ℝ+ → ((𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
7170rexlimdv 3030 . . . . . . 7 ((𝜑𝑥𝐺) → (∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖)))
7229, 71mpd 15 . . . . . 6 ((𝜑𝑥𝐺) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
73 eliun 4524 . . . . . 6 (𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
7472, 73sylibr 224 . . . . 5 ((𝜑𝑥𝐺) → 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7574ralrimiva 2966 . . . 4 (𝜑 → ∀𝑥𝐺 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
76 dfss3 3592 . . . 4 (𝐺 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ ∀𝑥𝐺 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7775, 76sylibr 224 . . 3 (𝜑𝐺 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7862eleq2i 2693 . . . . . . . . 9 (𝐾 ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
7978biimpi 206 . . . . . . . 8 (𝐾 ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
8079adantl 482 . . . . . . 7 ((𝜑𝐾) → ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
81 rabid 3116 . . . . . . 7 ( ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺} ↔ ( ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺))
8280, 81sylib 208 . . . . . 6 ((𝜑𝐾) → ( ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺))
8382simprd 479 . . . . 5 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8483ralrimiva 2966 . . . 4 (𝜑 → ∀𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
85 iunss 4561 . . . 4 ( 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺 ↔ ∀𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8684, 85sylibr 224 . . 3 (𝜑 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8777, 86eqssd 3620 . 2 (𝜑𝐺 = 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
88 opnvonmbllem2.n . . . 4 𝑆 = dom (voln‘𝑋)
891, 88dmovnsal 40826 . . 3 (𝜑𝑆 ∈ SAlg)
90 ssrab2 3687 . . . . . 6 { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺} ⊆ ((ℚ × ℚ) ↑𝑚 𝑋)
9162, 90eqsstri 3635 . . . . 5 𝐾 ⊆ ((ℚ × ℚ) ↑𝑚 𝑋)
9291a1i 11 . . . 4 (𝜑𝐾 ⊆ ((ℚ × ℚ) ↑𝑚 𝑋))
93 qct 39578 . . . . . . 7 ℚ ≼ ω
9493a1i 11 . . . . . 6 (𝜑 → ℚ ≼ ω)
95 xpct 8839 . . . . . 6 ((ℚ ≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ) ≼ ω)
9694, 94, 95syl2anc 693 . . . . 5 (𝜑 → (ℚ × ℚ) ≼ ω)
9796, 1mpct 39393 . . . 4 (𝜑 → ((ℚ × ℚ) ↑𝑚 𝑋) ≼ ω)
98 ssct 8041 . . . 4 ((𝐾 ⊆ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ ((ℚ × ℚ) ↑𝑚 𝑋) ≼ ω) → 𝐾 ≼ ω)
9992, 97, 98syl2anc 693 . . 3 (𝜑𝐾 ≼ ω)
100 reex 10027 . . . . . . . . . 10 ℝ ∈ V
101100, 100xpex 6962 . . . . . . . . 9 (ℝ × ℝ) ∈ V
102 qssre 11798 . . . . . . . . . 10 ℚ ⊆ ℝ
103 xpss12 5225 . . . . . . . . . 10 ((ℚ ⊆ ℝ ∧ ℚ ⊆ ℝ) → (ℚ × ℚ) ⊆ (ℝ × ℝ))
104102, 102, 103mp2an 708 . . . . . . . . 9 (ℚ × ℚ) ⊆ (ℝ × ℝ)
105 mapss 7900 . . . . . . . . 9 (((ℝ × ℝ) ∈ V ∧ (ℚ × ℚ) ⊆ (ℝ × ℝ)) → ((ℚ × ℚ) ↑𝑚 𝑋) ⊆ ((ℝ × ℝ) ↑𝑚 𝑋))
106101, 104, 105mp2an 708 . . . . . . . 8 ((ℚ × ℚ) ↑𝑚 𝑋) ⊆ ((ℝ × ℝ) ↑𝑚 𝑋)
10791sseli 3599 . . . . . . . 8 (𝐾 ∈ ((ℚ × ℚ) ↑𝑚 𝑋))
108106, 107sseldi 3601 . . . . . . 7 (𝐾 ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
109 elmapi 7879 . . . . . . 7 ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) → :𝑋⟶(ℝ × ℝ))
110108, 109syl 17 . . . . . 6 (𝐾:𝑋⟶(ℝ × ℝ))
111110adantl 482 . . . . 5 ((𝜑𝐾) → :𝑋⟶(ℝ × ℝ))
112 fveq2 6191 . . . . . . 7 (𝑘 = 𝑖 → (𝑘) = (𝑖))
113112fveq2d 6195 . . . . . 6 (𝑘 = 𝑖 → (1st ‘(𝑘)) = (1st ‘(𝑖)))
114113cbvmptv 4750 . . . . 5 (𝑘𝑋 ↦ (1st ‘(𝑘))) = (𝑖𝑋 ↦ (1st ‘(𝑖)))
115112fveq2d 6195 . . . . . 6 (𝑘 = 𝑖 → (2nd ‘(𝑘)) = (2nd ‘(𝑖)))
116115cbvmptv 4750 . . . . 5 (𝑘𝑋 ↦ (2nd ‘(𝑘))) = (𝑖𝑋 ↦ (2nd ‘(𝑖)))
117111, 114, 116hoicoto2 40819 . . . 4 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) = X𝑖𝑋 (((𝑘𝑋 ↦ (1st ‘(𝑘)))‘𝑖)[,)((𝑘𝑋 ↦ (2nd ‘(𝑘)))‘𝑖)))
1181adantr 481 . . . . 5 ((𝜑𝐾) → 𝑋 ∈ Fin)
119111ffvelrnda 6359 . . . . . . 7 (((𝜑𝐾) ∧ 𝑘𝑋) → (𝑘) ∈ (ℝ × ℝ))
120 xp1st 7198 . . . . . . 7 ((𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝑘)) ∈ ℝ)
121119, 120syl 17 . . . . . 6 (((𝜑𝐾) ∧ 𝑘𝑋) → (1st ‘(𝑘)) ∈ ℝ)
122 eqid 2622 . . . . . 6 (𝑘𝑋 ↦ (1st ‘(𝑘))) = (𝑘𝑋 ↦ (1st ‘(𝑘)))
123121, 122fmptd 6385 . . . . 5 ((𝜑𝐾) → (𝑘𝑋 ↦ (1st ‘(𝑘))):𝑋⟶ℝ)
124 xp2nd 7199 . . . . . . 7 ((𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝑘)) ∈ ℝ)
125119, 124syl 17 . . . . . 6 (((𝜑𝐾) ∧ 𝑘𝑋) → (2nd ‘(𝑘)) ∈ ℝ)
126 eqid 2622 . . . . . 6 (𝑘𝑋 ↦ (2nd ‘(𝑘))) = (𝑘𝑋 ↦ (2nd ‘(𝑘)))
127125, 126fmptd 6385 . . . . 5 ((𝜑𝐾) → (𝑘𝑋 ↦ (2nd ‘(𝑘))):𝑋⟶ℝ)
128118, 88, 123, 127hoimbl 40845 . . . 4 ((𝜑𝐾) → X𝑖𝑋 (((𝑘𝑋 ↦ (1st ‘(𝑘)))‘𝑖)[,)((𝑘𝑋 ↦ (2nd ‘(𝑘)))‘𝑖)) ∈ 𝑆)
129117, 128eqeltrd 2701 . . 3 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) ∈ 𝑆)
13089, 99, 129saliuncl 40542 . 2 (𝜑 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ∈ 𝑆)
13187, 130eqeltrd 2701 1 (𝜑𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  cop 4183   ciun 4520   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  ωcom 7065  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  Xcixp 7908  cdom 7953  Fincfn 7955  cr 9935  cq 11788  +crp 11832  [,)cico 12177  distcds 15950  TopOpenctopn 16082  ∞Metcxmt 19731  Metcme 19732  ballcbl 19733  MetOpencmopn 19736  fldcrefld 19950   freeLMod cfrlm 20090  TopOnctopon 20715  toℂHilctch 22967  ℝ^crrx 23171  volncvoln 40752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-abv 18817  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-refld 19951  df-phl 19971  df-dsmm 20076  df-frlm 20091  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cmp 21190  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389  df-nrg 22390  df-nlm 22391  df-clm 22863  df-cph 22968  df-tch 22969  df-rrx 23173  df-ovol 23233  df-vol 23234  df-salg 40529  df-sumge0 40580  df-mea 40667  df-ome 40704  df-caragen 40706  df-ovoln 40751  df-voln 40753
This theorem is referenced by:  opnvonmbl  40848
  Copyright terms: Public domain W3C validator