MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgbr Structured version   Visualization version   GIF version

Theorem hpgbr 25652
Description: Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
hpgbr.a (𝜑𝐴𝑃)
hpgbr.b (𝜑𝐵𝑃)
Assertion
Ref Expression
hpgbr (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝐷,𝑎,𝑏,𝑐,𝑡   𝐺,𝑎,𝑏   𝐼,𝑎,𝑏,𝑐,𝑡   𝑂,𝑎,𝑏   𝑃,𝑎,𝑏,𝑐,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑎,𝑏,𝑐)   𝐴(𝑡,𝑎,𝑏)   𝐵(𝑡,𝑎,𝑏)   𝐺(𝑡,𝑐)   𝐿(𝑡,𝑎,𝑏,𝑐)   𝑂(𝑡,𝑐)

Proof of Theorem hpgbr
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishpg.p . . . . 5 𝑃 = (Base‘𝐺)
2 ishpg.i . . . . 5 𝐼 = (Itv‘𝐺)
3 ishpg.l . . . . 5 𝐿 = (LineG‘𝐺)
4 ishpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 ishpg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
6 ishpg.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
71, 2, 3, 4, 5, 6ishpg 25651 . . . 4 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)})
8 simpl 473 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
98breq1d 4663 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎𝑂𝑐𝑢𝑂𝑐))
10 simpr 477 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
1110breq1d 4663 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑏𝑂𝑐𝑣𝑂𝑐))
129, 11anbi12d 747 . . . . . 6 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑎𝑂𝑐𝑏𝑂𝑐) ↔ (𝑢𝑂𝑐𝑣𝑂𝑐)))
1312rexbidv 3052 . . . . 5 ((𝑎 = 𝑢𝑏 = 𝑣) → (∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐) ↔ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)))
1413cbvopabv 4722 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}
157, 14syl6eq 2672 . . 3 (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)})
1615breqd 4664 . 2 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵))
17 hpgbr.a . . 3 (𝜑𝐴𝑃)
18 hpgbr.b . . 3 (𝜑𝐵𝑃)
19 simpl 473 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐵) → 𝑢 = 𝐴)
2019breq1d 4663 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐵) → (𝑢𝑂𝑐𝐴𝑂𝑐))
21 simpr 477 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2221breq1d 4663 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐵) → (𝑣𝑂𝑐𝐵𝑂𝑐))
2320, 22anbi12d 747 . . . . 5 ((𝑢 = 𝐴𝑣 = 𝐵) → ((𝑢𝑂𝑐𝑣𝑂𝑐) ↔ (𝐴𝑂𝑐𝐵𝑂𝑐)))
2423rexbidv 3052 . . . 4 ((𝑢 = 𝐴𝑣 = 𝐵) → (∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐) ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
25 eqid 2622 . . . 4 {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}
2624, 25brabga 4989 . . 3 ((𝐴𝑃𝐵𝑃) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
2717, 18, 26syl2anc 693 . 2 (𝜑 → (𝐴{⟨𝑢, 𝑣⟩ ∣ ∃𝑐𝑃 (𝑢𝑂𝑐𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
2816, 27bitrd 268 1 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  cdif 3571   class class class wbr 4653  {copab 4712  ran crn 5115  cfv 5888  (class class class)co 6650  Basecbs 15857  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  hpGchpg 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-hpg 25650
This theorem is referenced by:  hpgne1  25653  hpgne2  25654  lnopp2hpgb  25655  hpgid  25658  hpgcom  25659  hpgtr  25660
  Copyright terms: Public domain W3C validator