Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinxpssinxp2 Structured version   Visualization version   Unicode version

Theorem idinxpssinxp2 34089
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019.)
Assertion
Ref Expression
idinxpssinxp2  |-  ( (  _I  i^i  ( A  X.  A ) ) 
C_  ( R  i^i  ( A  X.  A
) )  <->  A. x  e.  A  x R x )
Distinct variable groups:    x, A    x, R

Proof of Theorem idinxpssinxp2
StepHypRef Expression
1 idinxpres 34088 . . . 4  |-  (  _I 
i^i  ( A  X.  A ) )  =  (  _I  |`  A )
21sseq1i 3629 . . 3  |-  ( (  _I  i^i  ( A  X.  A ) ) 
C_  ( R  i^i  ( A  X.  A
) )  <->  (  _I  |`  A )  C_  ( R  i^i  ( A  X.  A ) ) )
3 issref 5509 . . 3  |-  ( (  _I  |`  A )  C_  ( R  i^i  ( A  X.  A ) )  <->  A. x  e.  A  x ( R  i^i  ( A  X.  A
) ) x )
4 brinxp2ALTV 34034 . . . . 5  |-  ( x ( R  i^i  ( A  X.  A ) ) x  <->  ( ( x  e.  A  /\  x  e.  A )  /\  x R x ) )
5 pm4.24 675 . . . . . 6  |-  ( x  e.  A  <->  ( x  e.  A  /\  x  e.  A ) )
65anbi1i 731 . . . . 5  |-  ( ( x  e.  A  /\  x R x )  <->  ( (
x  e.  A  /\  x  e.  A )  /\  x R x ) )
74, 6bitr4i 267 . . . 4  |-  ( x ( R  i^i  ( A  X.  A ) ) x  <->  ( x  e.  A  /\  x R x ) )
87ralbii 2980 . . 3  |-  ( A. x  e.  A  x
( R  i^i  ( A  X.  A ) ) x  <->  A. x  e.  A  ( x  e.  A  /\  x R x ) )
92, 3, 83bitri 286 . 2  |-  ( (  _I  i^i  ( A  X.  A ) ) 
C_  ( R  i^i  ( A  X.  A
) )  <->  A. x  e.  A  ( x  e.  A  /\  x R x ) )
10 ralanid 34010 . 2  |-  ( A. x  e.  A  (
x  e.  A  /\  x R x )  <->  A. x  e.  A  x R x )
119, 10bitri 264 1  |-  ( (  _I  i^i  ( A  X.  A ) ) 
C_  ( R  i^i  ( A  X.  A
) )  <->  A. x  e.  A  x R x )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   class class class wbr 4653    _I cid 5023    X. cxp 5112    |` cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891
This theorem is referenced by:  idinxpssinxp3  34090  idinxpssinxp4  34091
  Copyright terms: Public domain W3C validator