Proof of Theorem iincld
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 2 | 1 | cldss 20833 |
. . . . . . 7
⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐵 ⊆ ∪ 𝐽) |
| 3 | | dfss4 3858 |
. . . . . . 7
⊢ (𝐵 ⊆ ∪ 𝐽
↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝐵)) = 𝐵) |
| 4 | 2, 3 | sylib 208 |
. . . . . 6
⊢ (𝐵 ∈ (Clsd‘𝐽) → (∪ 𝐽
∖ (∪ 𝐽 ∖ 𝐵)) = 𝐵) |
| 5 | 4 | ralimi 2952 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝐵)) = 𝐵) |
| 6 | | iineq2 4538 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (∪ 𝐽
∖ (∪ 𝐽 ∖ 𝐵)) = 𝐵 → ∩
𝑥 ∈ 𝐴 (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝐵)) = ∩ 𝑥 ∈ 𝐴 𝐵) |
| 7 | 5, 6 | syl 17 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ (Clsd‘𝐽) → ∩
𝑥 ∈ 𝐴 (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝐵)) = ∩ 𝑥 ∈ 𝐴 𝐵) |
| 8 | 7 | adantl 482 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝐵)) = ∩ 𝑥 ∈ 𝐴 𝐵) |
| 9 | | iindif2 4589 |
. . . 4
⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝐵)) = (∪ 𝐽
∖ ∪ 𝑥 ∈ 𝐴 (∪ 𝐽 ∖ 𝐵))) |
| 10 | 9 | adantr 481 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝐵)) = (∪ 𝐽
∖ ∪ 𝑥 ∈ 𝐴 (∪ 𝐽 ∖ 𝐵))) |
| 11 | 8, 10 | eqtr3d 2658 |
. 2
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 = (∪ 𝐽 ∖ ∪ 𝑥 ∈ 𝐴 (∪ 𝐽 ∖ 𝐵))) |
| 12 | | r19.2z 4060 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∃𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
| 13 | | cldrcl 20830 |
. . . . 5
⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
| 14 | 13 | rexlimivw 3029 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
| 15 | 12, 14 | syl 17 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) |
| 16 | 1 | cldopn 20835 |
. . . . . 6
⊢ (𝐵 ∈ (Clsd‘𝐽) → (∪ 𝐽
∖ 𝐵) ∈ 𝐽) |
| 17 | 16 | ralimi 2952 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
| 18 | 17 | adantl 482 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥 ∈ 𝐴 (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
| 19 | | iunopn 20703 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) → ∪
𝑥 ∈ 𝐴 (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
| 20 | 15, 18, 19 | syl2anc 693 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) |
| 21 | 1 | opncld 20837 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ∪ 𝑥 ∈ 𝐴 (∪ 𝐽 ∖ 𝐵) ∈ 𝐽) → (∪ 𝐽 ∖ ∪ 𝑥 ∈ 𝐴 (∪ 𝐽 ∖ 𝐵)) ∈ (Clsd‘𝐽)) |
| 22 | 15, 20, 21 | syl2anc 693 |
. 2
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (∪
𝐽 ∖ ∪ 𝑥 ∈ 𝐴 (∪ 𝐽 ∖ 𝐵)) ∈ (Clsd‘𝐽)) |
| 23 | 11, 22 | eqeltrd 2701 |
1
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |