MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasaddfnlem Structured version   Visualization version   GIF version

Theorem imasaddfnlem 16188
Description: The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddflem.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
Assertion
Ref Expression
imasaddfnlem (𝜑 Fn (𝐵 × 𝐵))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem imasaddfnlem
Dummy variables 𝑤 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4932 . . . . . . . . 9 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V
2 fvex 6201 . . . . . . . . 9 (𝐹‘(𝑝 · 𝑞)) ∈ V
31, 2relsnop 5224 . . . . . . . 8 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
43rgenw 2924 . . . . . . 7 𝑞𝑉 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
5 reliun 5239 . . . . . . 7 (Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∀𝑞𝑉 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
64, 5mpbir 221 . . . . . 6 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
76rgenw 2924 . . . . 5 𝑝𝑉 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
8 reliun 5239 . . . . 5 (Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∀𝑝𝑉 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
97, 8mpbir 221 . . . 4 Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
10 imasaddflem.a . . . . 5 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
1110releqd 5203 . . . 4 (𝜑 → (Rel ↔ Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
129, 11mpbiri 248 . . 3 (𝜑 → Rel )
13 imasaddf.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝑉onto𝐵)
14 fof 6115 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
1513, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑉𝐵)
16 ffvelrn 6357 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝑉𝐵𝑝𝑉) → (𝐹𝑝) ∈ 𝐵)
17 ffvelrn 6357 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝑉𝐵𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
1816, 17anim12dan 882 . . . . . . . . . . . . . . . . 17 ((𝐹:𝑉𝐵 ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵))
1915, 18sylan 488 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵))
20 opelxpi 5148 . . . . . . . . . . . . . . . 16 (((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
2119, 20syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
22 opelxpi 5148 . . . . . . . . . . . . . . 15 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵) ∧ (𝐹‘(𝑝 · 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ((𝐵 × 𝐵) × V))
2321, 2, 22sylancl 694 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ((𝐵 × 𝐵) × V))
2423snssd 4340 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2524anassrs 680 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2625ralrimiva 2966 . . . . . . . . . . 11 ((𝜑𝑝𝑉) → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
27 iunss 4561 . . . . . . . . . . 11 ( 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V) ↔ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2826, 27sylibr 224 . . . . . . . . . 10 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2928ralrimiva 2966 . . . . . . . . 9 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
30 iunss 4561 . . . . . . . . 9 ( 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V) ↔ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
3129, 30sylibr 224 . . . . . . . 8 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
3210, 31eqsstrd 3639 . . . . . . 7 (𝜑 ⊆ ((𝐵 × 𝐵) × V))
33 dmss 5323 . . . . . . 7 ( ⊆ ((𝐵 × 𝐵) × V) → dom ⊆ dom ((𝐵 × 𝐵) × V))
3432, 33syl 17 . . . . . 6 (𝜑 → dom ⊆ dom ((𝐵 × 𝐵) × V))
35 vn0 3924 . . . . . . 7 V ≠ ∅
36 dmxp 5344 . . . . . . 7 (V ≠ ∅ → dom ((𝐵 × 𝐵) × V) = (𝐵 × 𝐵))
3735, 36ax-mp 5 . . . . . 6 dom ((𝐵 × 𝐵) × V) = (𝐵 × 𝐵)
3834, 37syl6sseq 3651 . . . . 5 (𝜑 → dom ⊆ (𝐵 × 𝐵))
39 forn 6118 . . . . . . 7 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
4013, 39syl 17 . . . . . 6 (𝜑 → ran 𝐹 = 𝐵)
4140sqxpeqd 5141 . . . . 5 (𝜑 → (ran 𝐹 × ran 𝐹) = (𝐵 × 𝐵))
4238, 41sseqtr4d 3642 . . . 4 (𝜑 → dom ⊆ (ran 𝐹 × ran 𝐹))
4310eleq2d 2687 . . . . . . . . . . . . 13 (𝜑 → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
4443adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
45 df-br 4654 . . . . . . . . . . . 12 (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤 ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ )
46 eliun 4524 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑝𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
47 eliun 4524 . . . . . . . . . . . . . 14 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4847rexbii 3041 . . . . . . . . . . . . 13 (∃𝑝𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4946, 48bitr2i 265 . . . . . . . . . . . 12 (∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
5044, 45, 493bitr4g 303 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤 ↔ ∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
51 opex 4932 . . . . . . . . . . . . . . 15 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ V
5251elsn 4192 . . . . . . . . . . . . . 14 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩)
53 opex 4932 . . . . . . . . . . . . . . . 16 ⟨(𝐹𝑎), (𝐹𝑏)⟩ ∈ V
54 vex 3203 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
5553, 54opth 4945 . . . . . . . . . . . . . . 15 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ↔ (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∧ 𝑤 = (𝐹‘(𝑝 · 𝑞))))
56 fvex 6201 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑎) ∈ V
57 fvex 6201 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑏) ∈ V
5856, 57opth 4945 . . . . . . . . . . . . . . . . . 18 (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ↔ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)))
59 imasaddf.e . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
6058, 59syl5bi 232 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
61 eqeq2 2633 . . . . . . . . . . . . . . . . . 18 ((𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)) → (𝑤 = (𝐹‘(𝑎 · 𝑏)) ↔ 𝑤 = (𝐹‘(𝑝 · 𝑞))))
6261biimprd 238 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)) → (𝑤 = (𝐹‘(𝑝 · 𝑞)) → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6360, 62syl6 35 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ → (𝑤 = (𝐹‘(𝑝 · 𝑞)) → 𝑤 = (𝐹‘(𝑎 · 𝑏)))))
6463impd 447 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∧ 𝑤 = (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6555, 64syl5bi 232 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6652, 65syl5bi 232 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
67663expa 1265 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6867rexlimdvva 3038 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6950, 68sylbid 230 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))))
7069alrimiv 1855 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑤(⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))))
71 mo2icl 3385 . . . . . . . . 9 (∀𝑤(⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))) → ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
7270, 71syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
7372ralrimivva 2971 . . . . . . 7 (𝜑 → ∀𝑎𝑉𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
74 fofn 6117 . . . . . . . . . 10 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
7513, 74syl 17 . . . . . . . . 9 (𝜑𝐹 Fn 𝑉)
76 opeq2 4403 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑏) → ⟨(𝐹𝑎), 𝑧⟩ = ⟨(𝐹𝑎), (𝐹𝑏)⟩)
7776breq1d 4663 . . . . . . . . . . 11 (𝑧 = (𝐹𝑏) → (⟨(𝐹𝑎), 𝑧 𝑤 ↔ ⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7877mobidv 2491 . . . . . . . . . 10 (𝑧 = (𝐹𝑏) → (∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7978ralrn 6362 . . . . . . . . 9 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
8075, 79syl 17 . . . . . . . 8 (𝜑 → (∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
8180ralbidv 2986 . . . . . . 7 (𝜑 → (∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑎𝑉𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
8273, 81mpbird 247 . . . . . 6 (𝜑 → ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤)
83 opeq1 4402 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ⟨𝑦, 𝑧⟩ = ⟨(𝐹𝑎), 𝑧⟩)
8483breq1d 4663 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (⟨𝑦, 𝑧 𝑤 ↔ ⟨(𝐹𝑎), 𝑧 𝑤))
8584mobidv 2491 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∃*𝑤𝑦, 𝑧 𝑤 ↔ ∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8685ralbidv 2986 . . . . . . . 8 (𝑦 = (𝐹𝑎) → (∀𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8786ralrn 6362 . . . . . . 7 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8875, 87syl 17 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8982, 88mpbird 247 . . . . 5 (𝜑 → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤)
90 breq1 4656 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 𝑤 ↔ ⟨𝑦, 𝑧 𝑤))
9190mobidv 2491 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → (∃*𝑤 𝑥 𝑤 ↔ ∃*𝑤𝑦, 𝑧 𝑤))
9291ralxp 5263 . . . . 5 (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤 ↔ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤)
9389, 92sylibr 224 . . . 4 (𝜑 → ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤)
94 ssralv 3666 . . . 4 (dom ⊆ (ran 𝐹 × ran 𝐹) → (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
9542, 93, 94sylc 65 . . 3 (𝜑 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤)
96 dffun7 5915 . . 3 (Fun ↔ (Rel ∧ ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
9712, 95, 96sylanbrc 698 . 2 (𝜑 → Fun )
98 eqimss2 3658 . . . . . . . . . . 11 ( = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
9910, 98syl 17 . . . . . . . . . 10 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
100 iunss 4561 . . . . . . . . . 10 ( 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ↔ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
10199, 100sylib 208 . . . . . . . . 9 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
102 iunss 4561 . . . . . . . . . . 11 ( 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ↔ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
103 opex 4932 . . . . . . . . . . . . . 14 ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ V
104103snss 4316 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ↔ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
1051, 2opeldm 5328 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
106104, 105sylbir 225 . . . . . . . . . . . 12 ({⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
107106ralimi 2952 . . . . . . . . . . 11 (∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
108102, 107sylbi 207 . . . . . . . . . 10 ( 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
109108ralimi 2952 . . . . . . . . 9 (∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
110101, 109syl 17 . . . . . . . 8 (𝜑 → ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
111 opeq2 4403 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑞) → ⟨(𝐹𝑝), 𝑧⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
112111eleq1d 2686 . . . . . . . . . . 11 (𝑧 = (𝐹𝑞) → (⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
113112ralrn 6362 . . . . . . . . . 10 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
11475, 113syl 17 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
115114ralbidv 2986 . . . . . . . 8 (𝜑 → (∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
116110, 115mpbird 247 . . . . . . 7 (𝜑 → ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom )
117 opeq1 4402 . . . . . . . . . . 11 (𝑦 = (𝐹𝑝) → ⟨𝑦, 𝑧⟩ = ⟨(𝐹𝑝), 𝑧⟩)
118117eleq1d 2686 . . . . . . . . . 10 (𝑦 = (𝐹𝑝) → (⟨𝑦, 𝑧⟩ ∈ dom ↔ ⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
119118ralbidv 2986 . . . . . . . . 9 (𝑦 = (𝐹𝑝) → (∀𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
120119ralrn 6362 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
12175, 120syl 17 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
122116, 121mpbird 247 . . . . . 6 (𝜑 → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom )
123 eleq1 2689 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ dom ↔ ⟨𝑦, 𝑧⟩ ∈ dom ))
124123ralxp 5263 . . . . . 6 (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom ↔ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom )
125122, 124sylibr 224 . . . . 5 (𝜑 → ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom )
126 dfss3 3592 . . . . 5 ((ran 𝐹 × ran 𝐹) ⊆ dom ↔ ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom )
127125, 126sylibr 224 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐹) ⊆ dom )
12841, 127eqsstr3d 3640 . . 3 (𝜑 → (𝐵 × 𝐵) ⊆ dom )
12938, 128eqssd 3620 . 2 (𝜑 → dom = (𝐵 × 𝐵))
130 df-fn 5891 . 2 ( Fn (𝐵 × 𝐵) ↔ (Fun ∧ dom = (𝐵 × 𝐵)))
13197, 129, 130sylanbrc 698 1 (𝜑 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  ∃*wmo 2471  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915  {csn 4177  cop 4183   ciun 4520   class class class wbr 4653   × cxp 5112  dom cdm 5114  ran crn 5115  Rel wrel 5119  Fun wfun 5882   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896
This theorem is referenced by:  imasaddvallem  16189  imasaddflem  16190  imasaddfn  16191  imasmulfn  16194
  Copyright terms: Public domain W3C validator