![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imsval | Structured version Visualization version GIF version |
Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
imsval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
imsval.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
imsval | ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6191 | . . . 4 ⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = (normCV‘𝑈)) | |
2 | fveq2 6191 | . . . 4 ⊢ (𝑢 = 𝑈 → ( −𝑣 ‘𝑢) = ( −𝑣 ‘𝑈)) | |
3 | 1, 2 | coeq12d 5286 | . . 3 ⊢ (𝑢 = 𝑈 → ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢)) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈))) |
4 | df-ims 27456 | . . 3 ⊢ IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) | |
5 | fvex 6201 | . . . 4 ⊢ (normCV‘𝑈) ∈ V | |
6 | fvex 6201 | . . . 4 ⊢ ( −𝑣 ‘𝑈) ∈ V | |
7 | 5, 6 | coex 7118 | . . 3 ⊢ ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)) ∈ V |
8 | 3, 4, 7 | fvmpt 6282 | . 2 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈))) |
9 | imsval.8 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
10 | imsval.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
11 | imsval.3 | . . 3 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
12 | 10, 11 | coeq12i 5285 | . 2 ⊢ (𝑁 ∘ 𝑀) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)) |
13 | 8, 9, 12 | 3eqtr4g 2681 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∘ ccom 5118 ‘cfv 5888 NrmCVeccnv 27439 −𝑣 cnsb 27444 normCVcnmcv 27445 IndMetcims 27446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ims 27456 |
This theorem is referenced by: imsdval 27541 imsdf 27544 cnims 27548 hhims 28029 hhssims 28132 |
Copyright terms: Public domain | W3C validator |