![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
Ref | Expression |
---|---|
coex.1 | ⊢ 𝐴 ∈ V |
coex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | coexg 7117 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 708 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1990 Vcvv 3200 ∘ ccom 5118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 |
This theorem is referenced by: domtr 8009 enfixsn 8069 wdomtr 8480 cfcoflem 9094 axcc3 9260 axdc4uzlem 12782 hashfacen 13238 cofu1st 16543 cofu2nd 16545 cofucl 16548 fucid 16631 symgplusg 17809 gsumzaddlem 18321 evls1fval 19684 evls1val 19685 evl1fval 19692 evl1val 19693 cnfldfun 19758 cnfldfunALT 19759 znle 19884 xkococnlem 21462 xkococn 21463 symgtgp 21905 pserulm 24176 imsval 27540 eulerpartgbij 30434 derangenlem 31153 subfacp1lem5 31166 poimirlem9 33418 poimirlem15 33424 poimirlem17 33426 poimirlem20 33429 mbfresfi 33456 tendopl2 36065 erngplus2 36092 erngplus2-rN 36100 dvaplusgv 36298 dvhvaddass 36386 dvhlveclem 36397 diblss 36459 diblsmopel 36460 dicvaddcl 36479 dicvscacl 36480 cdlemn7 36492 dihordlem7 36503 dihopelvalcpre 36537 xihopellsmN 36543 dihopellsm 36544 rabren3dioph 37379 fzisoeu 39514 stirlinglem14 40304 |
Copyright terms: Public domain | W3C validator |