MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coex Structured version   Visualization version   GIF version

Theorem coex 7118
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.)
Hypotheses
Ref Expression
coex.1 𝐴 ∈ V
coex.2 𝐵 ∈ V
Assertion
Ref Expression
coex (𝐴𝐵) ∈ V

Proof of Theorem coex
StepHypRef Expression
1 coex.1 . 2 𝐴 ∈ V
2 coex.2 . 2 𝐵 ∈ V
3 coexg 7117 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3mp2an 708 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 1990  Vcvv 3200  ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125
This theorem is referenced by:  domtr  8009  enfixsn  8069  wdomtr  8480  cfcoflem  9094  axcc3  9260  axdc4uzlem  12782  hashfacen  13238  cofu1st  16543  cofu2nd  16545  cofucl  16548  fucid  16631  symgplusg  17809  gsumzaddlem  18321  evls1fval  19684  evls1val  19685  evl1fval  19692  evl1val  19693  cnfldfun  19758  cnfldfunALT  19759  znle  19884  xkococnlem  21462  xkococn  21463  symgtgp  21905  pserulm  24176  imsval  27540  eulerpartgbij  30434  derangenlem  31153  subfacp1lem5  31166  poimirlem9  33418  poimirlem15  33424  poimirlem17  33426  poimirlem20  33429  mbfresfi  33456  tendopl2  36065  erngplus2  36092  erngplus2-rN  36100  dvaplusgv  36298  dvhvaddass  36386  dvhlveclem  36397  diblss  36459  diblsmopel  36460  dicvaddcl  36479  dicvscacl  36480  cdlemn7  36492  dihordlem7  36503  dihopelvalcpre  36537  xihopellsmN  36543  dihopellsm  36544  rabren3dioph  37379  fzisoeu  39514  stirlinglem14  40304
  Copyright terms: Public domain W3C validator