![]() |
Metamath
Proof Explorer Theorem List (p. 276 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nvmcl 27501 | Closure law for the vector subtraction operation of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑀𝐵) ∈ 𝑋) | ||
Theorem | nvnnncan1 27502 | Cancellation law for vector subtraction. (nnncan1 10317 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑀(𝐴𝑀𝐶)) = (𝐶𝑀𝐵)) | ||
Theorem | nvmdi 27503 | Distributive law for scalar product over subtraction. (Contributed by NM, 14-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶))) | ||
Theorem | nvnegneg 27504 | Double negative of a vector. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴) | ||
Theorem | nvmul0or 27505 | If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴 = 0 ∨ 𝐵 = 𝑍))) | ||
Theorem | nvrinv 27506 | A vector minus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = 𝑍) | ||
Theorem | nvlinv 27507 | Minus a vector plus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = 𝑍) | ||
Theorem | nvpncan2 27508 | Cancellation law for vector subtraction. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐴) = 𝐵) | ||
Theorem | nvpncan 27509 | Cancellation law for vector subtraction. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑀𝐵) = 𝐴) | ||
Theorem | nvaddsub 27510 | Commutative/associative law for vector addition and subtraction. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑀𝐶) = ((𝐴𝑀𝐶)𝐺𝐵)) | ||
Theorem | nvnpcan 27511 | Cancellation law for a normed complex vector space. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑀𝐵)𝐺𝐵) = 𝐴) | ||
Theorem | nvaddsub4 27512 | Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 8-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑀(𝐶𝐺𝐷)) = ((𝐴𝑀𝐶)𝐺(𝐵𝑀𝐷))) | ||
Theorem | nvmeq0 27513 | The difference between two vectors is zero iff they are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑀𝐵) = 𝑍 ↔ 𝐴 = 𝐵)) | ||
Theorem | nvmid 27514 | A vector minus itself is the zero vector. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑀𝐴) = 𝑍) | ||
Theorem | nvf 27515 | Mapping for the norm function. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ) | ||
Theorem | nvcl 27516 | The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) | ||
Theorem | nvcli 27517 | The norm of a normed complex vector space is a real number. (Contributed by NM, 20-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝐴 ∈ 𝑋 ⇒ ⊢ (𝑁‘𝐴) ∈ ℝ | ||
Theorem | nvs 27518 | Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) | ||
Theorem | nvsge0 27519 | The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = (𝐴 · (𝑁‘𝐵))) | ||
Theorem | nvm1 27520 | The norm of the negative of a vector. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(-1𝑆𝐴)) = (𝑁‘𝐴)) | ||
Theorem | nvdif 27521 | The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴)))) | ||
Theorem | nvpi 27522 | The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴)))) | ||
Theorem | nvz0 27523 | The norm of a zero vector is zero. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → (𝑁‘𝑍) = 0) | ||
Theorem | nvz 27524 | The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) | ||
Theorem | nvtri 27525 | Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) | ||
Theorem | nvmtri 27526 | Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) | ||
Theorem | nvabs 27527 | Norm difference property of a normed complex vector space. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝑁‘𝐴) − (𝑁‘𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) | ||
Theorem | nvge0 27528 | The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) | ||
Theorem | nvgt0 27529 | A nonzero norm is positive. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴 ≠ 𝑍 ↔ 0 < (𝑁‘𝐴))) | ||
Theorem | nv1 27530 | From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → (𝑁‘((1 / (𝑁‘𝐴))𝑆𝐴)) = 1) | ||
Theorem | nvop 27531 | A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) | ||
Theorem | cnnv 27532 | The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
Theorem | cnnvg 27533 | The vector addition (group) operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ + = ( +𝑣 ‘𝑈) | ||
Theorem | cnnvba 27534 | The base set of the normed complex vector space of complex numbers. (Contributed by NM, 7-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ ℂ = (BaseSet‘𝑈) | ||
Theorem | cnnvs 27535 | The scalar product operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ · = ( ·𝑠OLD ‘𝑈) | ||
Theorem | cnnvnm 27536 | The norm operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ abs = (normCV‘𝑈) | ||
Theorem | cnnvm 27537 | The vector subtraction operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ − = ( −𝑣 ‘𝑈) | ||
Theorem | elimnv 27538 | Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 | ||
Theorem | elimnvu 27539 | Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
⊢ if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) ∈ NrmCVec | ||
Theorem | imsval 27540 | Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) | ||
Theorem | imsdval 27541 | Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) | ||
Theorem | imsdval2 27542 | Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) | ||
Theorem | nvnd 27543 | The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷𝑍)) | ||
Theorem | imsdf 27544 | Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ) | ||
Theorem | imsmetlem 27545 | Lemma for imsmet 27546. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = (inv‘𝐺) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ 𝐷 ∈ (Met‘𝑋) | ||
Theorem | imsmet 27546 | The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | imsxmet 27547 | The induced metric of a normed complex vector space is an extended metric space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋)) | ||
Theorem | cnims 27548 | The metric induced on the complex numbers. cnmet 22575 proves that it is a metric. (Contributed by Steve Rodriguez, 5-Dec-2006.) (Revised by NM, 15-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 & ⊢ 𝐷 = (abs ∘ − ) ⇒ ⊢ 𝐷 = (IndMet‘𝑈) | ||
Theorem | vacn 27549 | Vector addition is jointly continuous in both arguments. (Contributed by Jeff Hankins, 16-Jun-2009.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Theorem | nmcvcn 27550 | The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.) |
⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
Theorem | nmcnc 27551 | The norm of a normed complex vector space is a continuous function to ℂ. (For ℝ, see nmcvcn 27550.) (Contributed by NM, 12-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
Theorem | smcnlem 27552* | Lemma for smcn 27553. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑇 = (1 / (1 + ((((𝑁‘𝑦) + (abs‘𝑥)) + 1) / 𝑟))) ⇒ ⊢ 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) | ||
Theorem | smcn 27553 | Scalar multiplication is jointly continuous in both arguments. (Contributed by NM, 16-Jun-2009.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) | ||
Theorem | vmcn 27554 | Vector subtraction is jointly continuous in both arguments. (Contributed by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑀 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Syntax | cdip 27555 | Extend class notation with the class inner product functions. |
class ·𝑖OLD | ||
Definition | df-dip 27556* | Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of [ReedSimon] p. 63 and Theorem 6.44 of [Ponnusamy] p. 361. Vector addition is (1st ‘𝑤), the scalar product is (2nd ‘𝑤), and the norm is 𝑛. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.) |
⊢ ·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD ‘𝑢)𝑦)))↑2)) / 4))) | ||
Theorem | dipfval 27557* | The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝑥𝐺((i↑𝑘)𝑆𝑦)))↑2)) / 4))) | ||
Theorem | ipval 27558* | Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, the norm is 𝑁, and the set of vectors is 𝑋. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4)) | ||
Theorem | ipval2lem2 27559 | Lemma for ipval3 27564. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℝ) | ||
Theorem | ipval2lem3 27560 | Lemma for ipval3 27564. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℝ) | ||
Theorem | ipval2lem4 27561 | Lemma for ipval3 27564. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℂ) | ||
Theorem | ipval2 27562 | Expansion of the inner product value ipval 27558. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) | ||
Theorem | 4ipval2 27563 | Four times the inner product value ipval3 27564, useful for simplifying certain proofs. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (4 · (𝐴𝑃𝐵)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))) | ||
Theorem | ipval3 27564 | Expansion of the inner product value ipval 27558. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝑀𝐵))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝑀(i𝑆𝐵)))↑2)))) / 4)) | ||
Theorem | ipidsq 27565 | The inner product of a vector with itself is the square of the vector's norm. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2)) | ||
Theorem | ipnm 27566 | Norm expressed in terms of inner product. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (√‘(𝐴𝑃𝐴))) | ||
Theorem | dipcl 27567 | An inner product is a complex number. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) | ||
Theorem | ipf 27568 | Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ) | ||
Theorem | dipcj 27569 | The complex conjugate of an inner product reverses its arguments. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)) | ||
Theorem | ipipcj 27570 | An inner product times its conjugate. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2)) | ||
Theorem | diporthcom 27571 | Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)) | ||
Theorem | dip0r 27572 | Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝑍) = 0) | ||
Theorem | dip0l 27573 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝑃𝐴) = 0) | ||
Theorem | ipz 27574 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝐴𝑃𝐴) = 0 ↔ 𝐴 = 𝑍)) | ||
Theorem | dipcn 27575 | Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
Syntax | css 27576 | Extend class notation with the class of all subspaces of normed complex vector spaces. |
class SubSp | ||
Definition | df-ssp 27577* | Define the class of all subspaces of normed complex vector spaces. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
⊢ SubSp = (𝑢 ∈ NrmCVec ↦ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ ( +𝑣 ‘𝑢) ∧ ( ·𝑠OLD ‘𝑤) ⊆ ( ·𝑠OLD ‘𝑢) ∧ (normCV‘𝑤) ⊆ (normCV‘𝑢))}) | ||
Theorem | sspval 27578* | The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)}) | ||
Theorem | isssp 27579 | The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) | ||
Theorem | sspid 27580 | A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) | ||
Theorem | sspnv 27581 | A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) | ||
Theorem | sspba 27582 | The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) | ||
Theorem | sspg 27583 | Vector addition on a subspace is a restriction of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) | ||
Theorem | sspgval 27584 | Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝐹 = ( +𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) | ||
Theorem | ssps 27585 | Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑆 ↾ (ℂ × 𝑌))) | ||
Theorem | sspsval 27586 | Scalar multiplication on a subspace in terms of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑌)) → (𝐴𝑅𝐵) = (𝐴𝑆𝐵)) | ||
Theorem | sspmlem 27587* | Lemma for sspm 27589 and others. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) & ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) & ⊢ (𝑊 ∈ NrmCVec → 𝐹:(𝑌 × 𝑌)⟶𝑅) & ⊢ (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶𝑆) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) | ||
Theorem | sspmval 27588 | Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝐿 = ( −𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐿𝐵) = (𝐴𝑀𝐵)) | ||
Theorem | sspm 27589 | Vector subtraction on a subspace is a restriction of vector subtraction on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝐿 = ( −𝑣 ‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐿 = (𝑀 ↾ (𝑌 × 𝑌))) | ||
Theorem | sspz 27590 | The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑄 = (0vec‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑄 = 𝑍) | ||
Theorem | sspn 27591 | The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑁 ↾ 𝑌)) | ||
Theorem | sspnval 27592 | The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ 𝐴 ∈ 𝑌) → (𝑀‘𝐴) = (𝑁‘𝐴)) | ||
Theorem | sspimsval 27593 | The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐶𝐵) = (𝐴𝐷𝐵)) | ||
Theorem | sspims 27594 | The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐶 = (IndMet‘𝑊) & ⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))) | ||
Syntax | clno 27595 | Extend class notation with the class of linear operators on normed complex vector spaces. |
class LnOp | ||
Syntax | cnmoo 27596 | Extend class notation with the class of operator norms on normed complex vector spaces. |
class normOpOLD | ||
Syntax | cblo 27597 | Extend class notation with the class of bounded linear operators on normed complex vector spaces. |
class BLnOp | ||
Syntax | c0o 27598 | Extend class notation with the class of zero operators on normed complex vector spaces. |
class 0op | ||
Definition | df-lno 27599* | Define the class of linear operators between two normed complex vector spaces. In the literature, an operator may be a partial function, i.e. the domain of an operator is not necessarily the entire vector space. However, since the domain of a linear operator is a vector subspace, we define it with a complete function for convenience and will use subset relations to specify the partial function case. (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
⊢ LnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑𝑚 (BaseSet‘𝑢)) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD ‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD ‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧))}) | ||
Definition | df-nmoo 27600* | Define the norm of an operator between two normed complex vector spaces. This definition produces an operator norm function for each pair of vector spaces 〈𝑢, 𝑤〉. Based on definition of linear operator norm in [AkhiezerGlazman] p. 39, although we define it for all operators for convenience. It isn't necessarily meaningful for nonlinear operators, since it doesn't take into account operator values at vectors with norm greater than 1. See Equation 2 of [Kreyszig] p. 92 for a definition that does (although it ignores the value at the zero vector). However, operator norms are rarely if ever used for nonlinear operators. (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
⊢ normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑𝑚 (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV‘𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, < ))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |