| Step | Hyp | Ref
| Expression |
| 1 | | inss1 3833 |
. . . 4
⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 |
| 2 | | filsspw 21655 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) |
| 3 | 2 | adantr 481 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋) |
| 4 | 1, 3 | syl5ss 3614 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹 ∩ 𝐺) ⊆ 𝒫 𝑋) |
| 5 | | 0nelfil 21653 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝐹) |
| 6 | 5 | adantr 481 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ 𝐹) |
| 7 | 1 | sseli 3599 |
. . . 4
⊢ (∅
∈ (𝐹 ∩ 𝐺) → ∅ ∈ 𝐹) |
| 8 | 6, 7 | nsyl 135 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ (𝐹 ∩ 𝐺)) |
| 9 | | filtop 21659 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
| 10 | 9 | adantr 481 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ 𝐹) |
| 11 | | filtop 21659 |
. . . . 5
⊢ (𝐺 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐺) |
| 12 | 11 | adantl 482 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ 𝐺) |
| 13 | 10, 12 | elind 3798 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ (𝐹 ∩ 𝐺)) |
| 14 | 4, 8, 13 | 3jca 1242 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ((𝐹 ∩ 𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹 ∩ 𝐺) ∧ 𝑋 ∈ (𝐹 ∩ 𝐺))) |
| 15 | | simpll 790 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝐹 ∈ (Fil‘𝑋)) |
| 16 | | simpr2 1068 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ (𝐹 ∩ 𝐺)) |
| 17 | 1 | sseli 3599 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐹 ∩ 𝐺) → 𝑦 ∈ 𝐹) |
| 18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐹) |
| 19 | | simpr1 1067 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝒫 𝑋) |
| 20 | 19 | elpwid 4170 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ⊆ 𝑋) |
| 21 | | simpr3 1069 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ 𝑥) |
| 22 | | filss 21657 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐹) |
| 23 | 15, 18, 20, 21, 22 | syl13anc 1328 |
. . . . . . 7
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐹) |
| 24 | | simplr 792 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝐺 ∈ (Fil‘𝑋)) |
| 25 | | inss2 3834 |
. . . . . . . . . 10
⊢ (𝐹 ∩ 𝐺) ⊆ 𝐺 |
| 26 | 25 | sseli 3599 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐹 ∩ 𝐺) → 𝑦 ∈ 𝐺) |
| 27 | 16, 26 | syl 17 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐺) |
| 28 | | filss 21657 |
. . . . . . . 8
⊢ ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑦 ∈ 𝐺 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐺) |
| 29 | 24, 27, 20, 21, 28 | syl13anc 1328 |
. . . . . . 7
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐺) |
| 30 | 23, 29 | elind 3798 |
. . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ (𝐹 ∩ 𝐺)) |
| 31 | 30 | 3exp2 1285 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝒫 𝑋 → (𝑦 ∈ (𝐹 ∩ 𝐺) → (𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺))))) |
| 32 | 31 | imp 445 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑦 ∈ (𝐹 ∩ 𝐺) → (𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺)))) |
| 33 | 32 | rexlimdv 3030 |
. . 3
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦 ∈ (𝐹 ∩ 𝐺)𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺))) |
| 34 | 33 | ralrimiva 2966 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹 ∩ 𝐺)𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺))) |
| 35 | | simpl 473 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋)) |
| 36 | 1 | sseli 3599 |
. . . . . 6
⊢ (𝑥 ∈ (𝐹 ∩ 𝐺) → 𝑥 ∈ 𝐹) |
| 37 | 36, 17 | anim12i 590 |
. . . . 5
⊢ ((𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺)) → (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) |
| 38 | | filin 21658 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ∩ 𝑦) ∈ 𝐹) |
| 39 | 38 | 3expb 1266 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝑥 ∩ 𝑦) ∈ 𝐹) |
| 40 | 35, 37, 39 | syl2an 494 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺))) → (𝑥 ∩ 𝑦) ∈ 𝐹) |
| 41 | | simpr 477 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐺 ∈ (Fil‘𝑋)) |
| 42 | 25 | sseli 3599 |
. . . . . 6
⊢ (𝑥 ∈ (𝐹 ∩ 𝐺) → 𝑥 ∈ 𝐺) |
| 43 | 42, 26 | anim12i 590 |
. . . . 5
⊢ ((𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺)) → (𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺)) |
| 44 | | filin 21658 |
. . . . . 6
⊢ ((𝐺 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺) → (𝑥 ∩ 𝑦) ∈ 𝐺) |
| 45 | 44 | 3expb 1266 |
. . . . 5
⊢ ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺)) → (𝑥 ∩ 𝑦) ∈ 𝐺) |
| 46 | 41, 43, 45 | syl2an 494 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺))) → (𝑥 ∩ 𝑦) ∈ 𝐺) |
| 47 | 40, 46 | elind 3798 |
. . 3
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺))) → (𝑥 ∩ 𝑦) ∈ (𝐹 ∩ 𝐺)) |
| 48 | 47 | ralrimivva 2971 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ (𝐹 ∩ 𝐺)∀𝑦 ∈ (𝐹 ∩ 𝐺)(𝑥 ∩ 𝑦) ∈ (𝐹 ∩ 𝐺)) |
| 49 | | isfil2 21660 |
. 2
⊢ ((𝐹 ∩ 𝐺) ∈ (Fil‘𝑋) ↔ (((𝐹 ∩ 𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹 ∩ 𝐺) ∧ 𝑋 ∈ (𝐹 ∩ 𝐺)) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹 ∩ 𝐺)𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺)) ∧ ∀𝑥 ∈ (𝐹 ∩ 𝐺)∀𝑦 ∈ (𝐹 ∩ 𝐺)(𝑥 ∩ 𝑦) ∈ (𝐹 ∩ 𝐺))) |
| 50 | 14, 34, 48, 49 | syl3anbrc 1246 |
1
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹 ∩ 𝐺) ∈ (Fil‘𝑋)) |