| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infil | Structured version Visualization version Unicode version | ||
| Description: The intersection of two filters is a filter. Use fiint 8237 to extend this property to the intersection of a finite set of filters. Paragraph 3 of [BourbakiTop1] p. I.36. (Contributed by FL, 17-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| infil |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3833 |
. . . 4
| |
| 2 | filsspw 21655 |
. . . . 5
| |
| 3 | 2 | adantr 481 |
. . . 4
|
| 4 | 1, 3 | syl5ss 3614 |
. . 3
|
| 5 | 0nelfil 21653 |
. . . . 5
| |
| 6 | 5 | adantr 481 |
. . . 4
|
| 7 | 1 | sseli 3599 |
. . . 4
|
| 8 | 6, 7 | nsyl 135 |
. . 3
|
| 9 | filtop 21659 |
. . . . 5
| |
| 10 | 9 | adantr 481 |
. . . 4
|
| 11 | filtop 21659 |
. . . . 5
| |
| 12 | 11 | adantl 482 |
. . . 4
|
| 13 | 10, 12 | elind 3798 |
. . 3
|
| 14 | 4, 8, 13 | 3jca 1242 |
. 2
|
| 15 | simpll 790 |
. . . . . . . 8
| |
| 16 | simpr2 1068 |
. . . . . . . . 9
| |
| 17 | 1 | sseli 3599 |
. . . . . . . . 9
|
| 18 | 16, 17 | syl 17 |
. . . . . . . 8
|
| 19 | simpr1 1067 |
. . . . . . . . 9
| |
| 20 | 19 | elpwid 4170 |
. . . . . . . 8
|
| 21 | simpr3 1069 |
. . . . . . . 8
| |
| 22 | filss 21657 |
. . . . . . . 8
| |
| 23 | 15, 18, 20, 21, 22 | syl13anc 1328 |
. . . . . . 7
|
| 24 | simplr 792 |
. . . . . . . 8
| |
| 25 | inss2 3834 |
. . . . . . . . . 10
| |
| 26 | 25 | sseli 3599 |
. . . . . . . . 9
|
| 27 | 16, 26 | syl 17 |
. . . . . . . 8
|
| 28 | filss 21657 |
. . . . . . . 8
| |
| 29 | 24, 27, 20, 21, 28 | syl13anc 1328 |
. . . . . . 7
|
| 30 | 23, 29 | elind 3798 |
. . . . . 6
|
| 31 | 30 | 3exp2 1285 |
. . . . 5
|
| 32 | 31 | imp 445 |
. . . 4
|
| 33 | 32 | rexlimdv 3030 |
. . 3
|
| 34 | 33 | ralrimiva 2966 |
. 2
|
| 35 | simpl 473 |
. . . . 5
| |
| 36 | 1 | sseli 3599 |
. . . . . 6
|
| 37 | 36, 17 | anim12i 590 |
. . . . 5
|
| 38 | filin 21658 |
. . . . . 6
| |
| 39 | 38 | 3expb 1266 |
. . . . 5
|
| 40 | 35, 37, 39 | syl2an 494 |
. . . 4
|
| 41 | simpr 477 |
. . . . 5
| |
| 42 | 25 | sseli 3599 |
. . . . . 6
|
| 43 | 42, 26 | anim12i 590 |
. . . . 5
|
| 44 | filin 21658 |
. . . . . 6
| |
| 45 | 44 | 3expb 1266 |
. . . . 5
|
| 46 | 41, 43, 45 | syl2an 494 |
. . . 4
|
| 47 | 40, 46 | elind 3798 |
. . 3
|
| 48 | 47 | ralrimivva 2971 |
. 2
|
| 49 | isfil2 21660 |
. 2
| |
| 50 | 14, 34, 48, 49 | syl3anbrc 1246 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-fbas 19743 df-fil 21650 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |