| Step | Hyp | Ref
| Expression |
| 1 | | elex 3212 |
. . 3
⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) |
| 2 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
| 3 | | inftm.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑊) |
| 4 | 2, 3 | syl6eqr 2674 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵) |
| 5 | 4 | eleq2d 2687 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↔ 𝑥 ∈ 𝐵)) |
| 6 | 4 | eleq2d 2687 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (𝑦 ∈ (Base‘𝑤) ↔ 𝑦 ∈ 𝐵)) |
| 7 | 5, 6 | anbi12d 747 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 8 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (0g‘𝑤) = (0g‘𝑊)) |
| 9 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (lt‘𝑤) = (lt‘𝑊)) |
| 10 | | eqidd 2623 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) |
| 11 | 8, 9, 10 | breq123d 4667 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((0g‘𝑤)(lt‘𝑤)𝑥 ↔ (0g‘𝑊)(lt‘𝑊)𝑥)) |
| 12 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (.g‘𝑤) = (.g‘𝑊)) |
| 13 | 12 | oveqd 6667 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝑛(.g‘𝑤)𝑥) = (𝑛(.g‘𝑊)𝑥)) |
| 14 | | eqidd 2623 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → 𝑦 = 𝑦) |
| 15 | 13, 9, 14 | breq123d 4667 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦 ↔ (𝑛(.g‘𝑊)𝑥)(lt‘𝑊)𝑦)) |
| 16 | 15 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦 ↔ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑊)𝑥)(lt‘𝑊)𝑦)) |
| 17 | 11, 16 | anbi12d 747 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦) ↔ ((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑊)𝑥)(lt‘𝑊)𝑦))) |
| 18 | 7, 17 | anbi12d 747 |
. . . . 5
⊢ (𝑤 = 𝑊 → (((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑊)𝑥)(lt‘𝑊)𝑦)))) |
| 19 | 18 | opabbidv 4716 |
. . . 4
⊢ (𝑤 = 𝑊 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑊)𝑥)(lt‘𝑊)𝑦))}) |
| 20 | | df-inftm 29732 |
. . . 4
⊢ ⋘
= (𝑤 ∈ V ↦
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦))}) |
| 21 | | fvex 6201 |
. . . . . . 7
⊢
(Base‘𝑊)
∈ V |
| 22 | 3, 21 | eqeltri 2697 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 23 | 22, 22 | xpex 6962 |
. . . . 5
⊢ (𝐵 × 𝐵) ∈ V |
| 24 | | opabssxp 5193 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑊)𝑥)(lt‘𝑊)𝑦))} ⊆ (𝐵 × 𝐵) |
| 25 | 23, 24 | ssexi 4803 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑊)𝑥)(lt‘𝑊)𝑦))} ∈ V |
| 26 | 19, 20, 25 | fvmpt 6282 |
. . 3
⊢ (𝑊 ∈ V →
(⋘‘𝑊) =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑊)𝑥)(lt‘𝑊)𝑦))}) |
| 27 | 1, 26 | syl 17 |
. 2
⊢ (𝑊 ∈ 𝑉 → (⋘‘𝑊) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ((0g‘𝑊)(lt‘𝑊)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑊)𝑥)(lt‘𝑊)𝑦))}) |
| 28 | 27, 24 | syl6eqss 3655 |
1
⊢ (𝑊 ∈ 𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵)) |