![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isarchi | Structured version Visualization version GIF version |
Description: Express the predicate "𝑊 is Archimedean ". (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
isarchi.b | ⊢ 𝐵 = (Base‘𝑊) |
isarchi.0 | ⊢ 0 = (0g‘𝑊) |
isarchi.i | ⊢ < = (⋘‘𝑊) |
Ref | Expression |
---|---|
isarchi | ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6191 | . . . 4 ⊢ (𝑤 = 𝑊 → (⋘‘𝑤) = (⋘‘𝑊)) | |
2 | 1 | eqeq1d 2624 | . . 3 ⊢ (𝑤 = 𝑊 → ((⋘‘𝑤) = ∅ ↔ (⋘‘𝑊) = ∅)) |
3 | df-archi 29733 | . . 3 ⊢ Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} | |
4 | 2, 3 | elab2g 3353 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ (⋘‘𝑊) = ∅)) |
5 | isarchi.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
6 | 5 | inftmrel 29734 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵)) |
7 | ss0b 3973 | . . . . 5 ⊢ ((⋘‘𝑊) ⊆ ∅ ↔ (⋘‘𝑊) = ∅) | |
8 | ssrel2 5210 | . . . . 5 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) ⊆ ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅))) | |
9 | 7, 8 | syl5bbr 274 | . . . 4 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅))) |
10 | noel 3919 | . . . . . . . 8 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
11 | 10 | nbn 362 | . . . . . . 7 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
12 | isarchi.i | . . . . . . . . 9 ⊢ < = (⋘‘𝑊) | |
13 | 12 | breqi 4659 | . . . . . . . 8 ⊢ (𝑥 < 𝑦 ↔ 𝑥(⋘‘𝑊)𝑦) |
14 | df-br 4654 | . . . . . . . 8 ⊢ (𝑥(⋘‘𝑊)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) | |
15 | 13, 14 | bitri 264 | . . . . . . 7 ⊢ (𝑥 < 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) |
16 | 11, 15 | xchnxbir 323 | . . . . . 6 ⊢ (¬ 𝑥 < 𝑦 ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
17 | 10 | pm2.21i 116 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)) |
18 | dfbi2 660 | . . . . . . 7 ⊢ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅) ∧ (〈𝑥, 𝑦〉 ∈ ∅ → 〈𝑥, 𝑦〉 ∈ (⋘‘𝑊)))) | |
19 | 17, 18 | mpbiran2 954 | . . . . . 6 ⊢ ((〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
20 | 16, 19 | bitri 264 | . . . . 5 ⊢ (¬ 𝑥 < 𝑦 ↔ (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
21 | 20 | 2ralbii 2981 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (〈𝑥, 𝑦〉 ∈ (⋘‘𝑊) → 〈𝑥, 𝑦〉 ∈ ∅)) |
22 | 9, 21 | syl6bbr 278 | . . 3 ⊢ ((⋘‘𝑊) ⊆ (𝐵 × 𝐵) → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
23 | 6, 22 | syl 17 | . 2 ⊢ (𝑊 ∈ 𝑉 → ((⋘‘𝑊) = ∅ ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
24 | 4, 23 | bitrd 268 | 1 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 ∅c0 3915 〈cop 4183 class class class wbr 4653 × cxp 5112 ‘cfv 5888 Basecbs 15857 0gc0g 16100 ⋘cinftm 29730 Archicarchi 29731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-inftm 29732 df-archi 29733 |
This theorem is referenced by: xrnarchi 29738 isarchi2 29739 |
Copyright terms: Public domain | W3C validator |