Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inftmrel Structured version   Visualization version   Unicode version

Theorem inftmrel 29734
Description: The infinitesimal relation for a structure  W. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypothesis
Ref Expression
inftm.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
inftmrel  |-  ( W  e.  V  ->  (<<< `  W )  C_  ( B  X.  B ) )

Proof of Theorem inftmrel
Dummy variables  x  w  y  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . 3  |-  ( W  e.  V  ->  W  e.  _V )
2 fveq2 6191 . . . . . . . . 9  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
3 inftm.b . . . . . . . . 9  |-  B  =  ( Base `  W
)
42, 3syl6eqr 2674 . . . . . . . 8  |-  ( w  =  W  ->  ( Base `  w )  =  B )
54eleq2d 2687 . . . . . . 7  |-  ( w  =  W  ->  (
x  e.  ( Base `  w )  <->  x  e.  B ) )
64eleq2d 2687 . . . . . . 7  |-  ( w  =  W  ->  (
y  e.  ( Base `  w )  <->  y  e.  B ) )
75, 6anbi12d 747 . . . . . 6  |-  ( w  =  W  ->  (
( x  e.  (
Base `  w )  /\  y  e.  ( Base `  w ) )  <-> 
( x  e.  B  /\  y  e.  B
) ) )
8 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  ( 0g `  w )  =  ( 0g `  W
) )
9 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  ( lt `  w )  =  ( lt `  W
) )
10 eqidd 2623 . . . . . . . 8  |-  ( w  =  W  ->  x  =  x )
118, 9, 10breq123d 4667 . . . . . . 7  |-  ( w  =  W  ->  (
( 0g `  w
) ( lt `  w ) x  <->  ( 0g `  W ) ( lt
`  W ) x ) )
12 fveq2 6191 . . . . . . . . . 10  |-  ( w  =  W  ->  (.g `  w )  =  (.g `  W ) )
1312oveqd 6667 . . . . . . . . 9  |-  ( w  =  W  ->  (
n (.g `  w ) x )  =  ( n (.g `  W ) x ) )
14 eqidd 2623 . . . . . . . . 9  |-  ( w  =  W  ->  y  =  y )
1513, 9, 14breq123d 4667 . . . . . . . 8  |-  ( w  =  W  ->  (
( n (.g `  w
) x ) ( lt `  w ) y  <->  ( n (.g `  W ) x ) ( lt `  W
) y ) )
1615ralbidv 2986 . . . . . . 7  |-  ( w  =  W  ->  ( A. n  e.  NN  ( n (.g `  w
) x ) ( lt `  w ) y  <->  A. n  e.  NN  ( n (.g `  W
) x ) ( lt `  W ) y ) )
1711, 16anbi12d 747 . . . . . 6  |-  ( w  =  W  ->  (
( ( 0g `  w ) ( lt
`  w ) x  /\  A. n  e.  NN  ( n (.g `  w ) x ) ( lt `  w
) y )  <->  ( ( 0g `  W ) ( lt `  W ) x  /\  A. n  e.  NN  ( n (.g `  W ) x ) ( lt `  W
) y ) ) )
187, 17anbi12d 747 . . . . 5  |-  ( w  =  W  ->  (
( ( x  e.  ( Base `  w
)  /\  y  e.  ( Base `  w )
)  /\  ( ( 0g `  w ) ( lt `  w ) x  /\  A. n  e.  NN  ( n (.g `  w ) x ) ( lt `  w
) y ) )  <-> 
( ( x  e.  B  /\  y  e.  B )  /\  (
( 0g `  W
) ( lt `  W ) x  /\  A. n  e.  NN  (
n (.g `  W ) x ) ( lt `  W ) y ) ) ) )
1918opabbidv 4716 . . . 4  |-  ( w  =  W  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  w )  /\  y  e.  ( Base `  w ) )  /\  ( ( 0g
`  w ) ( lt `  w ) x  /\  A. n  e.  NN  ( n (.g `  w ) x ) ( lt `  w
) y ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  ( ( 0g `  W ) ( lt `  W ) x  /\  A. n  e.  NN  ( n (.g `  W ) x ) ( lt `  W
) y ) ) } )
20 df-inftm 29732 . . . 4  |- <<<  =  (
w  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  w
)  /\  y  e.  ( Base `  w )
)  /\  ( ( 0g `  w ) ( lt `  w ) x  /\  A. n  e.  NN  ( n (.g `  w ) x ) ( lt `  w
) y ) ) } )
21 fvex 6201 . . . . . . 7  |-  ( Base `  W )  e.  _V
223, 21eqeltri 2697 . . . . . 6  |-  B  e. 
_V
2322, 22xpex 6962 . . . . 5  |-  ( B  X.  B )  e. 
_V
24 opabssxp 5193 . . . . 5  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  ( ( 0g `  W ) ( lt `  W ) x  /\  A. n  e.  NN  ( n (.g `  W ) x ) ( lt `  W
) y ) ) }  C_  ( B  X.  B )
2523, 24ssexi 4803 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  ( ( 0g `  W ) ( lt `  W ) x  /\  A. n  e.  NN  ( n (.g `  W ) x ) ( lt `  W
) y ) ) }  e.  _V
2619, 20, 25fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  (<<< `  W )  =  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B )  /\  (
( 0g `  W
) ( lt `  W ) x  /\  A. n  e.  NN  (
n (.g `  W ) x ) ( lt `  W ) y ) ) } )
271, 26syl 17 . 2  |-  ( W  e.  V  ->  (<<< `  W )  =  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B )  /\  (
( 0g `  W
) ( lt `  W ) x  /\  A. n  e.  NN  (
n (.g `  W ) x ) ( lt `  W ) y ) ) } )
2827, 24syl6eqss 3655 1  |-  ( W  e.  V  ->  (<<< `  W )  C_  ( B  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   {copab 4712    X. cxp 5112   ` cfv 5888  (class class class)co 6650   NNcn 11020   Basecbs 15857   0gc0g 16100   ltcplt 16941  .gcmg 17540  <<<cinftm 29730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-inftm 29732
This theorem is referenced by:  isarchi  29736
  Copyright terms: Public domain W3C validator