MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inisegn0 Structured version   Visualization version   GIF version

Theorem inisegn0 5497
Description: Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
inisegn0 (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅)

Proof of Theorem inisegn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐴 ∈ ran 𝐹𝐴 ∈ V)
2 snprc 4253 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
32biimpi 206 . . . . 5 𝐴 ∈ V → {𝐴} = ∅)
43imaeq2d 5466 . . . 4 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅))
5 ima0 5481 . . . 4 (𝐹 “ ∅) = ∅
64, 5syl6eq 2672 . . 3 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅)
76necon1ai 2821 . 2 ((𝐹 “ {𝐴}) ≠ ∅ → 𝐴 ∈ V)
8 eleq1 2689 . . 3 (𝑎 = 𝐴 → (𝑎 ∈ ran 𝐹𝐴 ∈ ran 𝐹))
9 sneq 4187 . . . . 5 (𝑎 = 𝐴 → {𝑎} = {𝐴})
109imaeq2d 5466 . . . 4 (𝑎 = 𝐴 → (𝐹 “ {𝑎}) = (𝐹 “ {𝐴}))
1110neeq1d 2853 . . 3 (𝑎 = 𝐴 → ((𝐹 “ {𝑎}) ≠ ∅ ↔ (𝐹 “ {𝐴}) ≠ ∅))
12 abn0 3954 . . . 4 ({𝑏𝑏𝐹𝑎} ≠ ∅ ↔ ∃𝑏 𝑏𝐹𝑎)
13 vex 3203 . . . . . 6 𝑎 ∈ V
14 iniseg 5496 . . . . . 6 (𝑎 ∈ V → (𝐹 “ {𝑎}) = {𝑏𝑏𝐹𝑎})
1513, 14ax-mp 5 . . . . 5 (𝐹 “ {𝑎}) = {𝑏𝑏𝐹𝑎}
1615neeq1i 2858 . . . 4 ((𝐹 “ {𝑎}) ≠ ∅ ↔ {𝑏𝑏𝐹𝑎} ≠ ∅)
1713elrn 5366 . . . 4 (𝑎 ∈ ran 𝐹 ↔ ∃𝑏 𝑏𝐹𝑎)
1812, 16, 173bitr4ri 293 . . 3 (𝑎 ∈ ran 𝐹 ↔ (𝐹 “ {𝑎}) ≠ ∅)
198, 11, 18vtoclbg 3267 . 2 (𝐴 ∈ V → (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅))
201, 7, 19pm5.21nii 368 1 (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  Vcvv 3200  c0 3915  {csn 4177   class class class wbr 4653  ccnv 5113  ran crn 5115  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  dnnumch3lem  37616  dnnumch3  37617  wessf1ornlem  39371
  Copyright terms: Public domain W3C validator