Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wessf1ornlem Structured version   Visualization version   GIF version

Theorem wessf1ornlem 39371
Description: Given a function 𝐹 on a well ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
wessf1ornlem.f (𝜑𝐹 Fn 𝐴)
wessf1ornlem.a (𝜑𝐴𝑉)
wessf1ornlem.r (𝜑𝑅 We 𝐴)
wessf1ornlem.g 𝐺 = (𝑦 ∈ ran 𝐹 ↦ (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥))
Assertion
Ref Expression
wessf1ornlem (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto→ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem wessf1ornlem
Dummy variables 𝑡 𝑢 𝑣 𝑤 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5485 . . . . . . . . 9 (𝐹 “ {𝑢}) ⊆ dom 𝐹
21a1i 11 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹 “ {𝑢}) ⊆ dom 𝐹)
3 wessf1ornlem.f . . . . . . . . . 10 (𝜑𝐹 Fn 𝐴)
4 fndm 5990 . . . . . . . . . 10 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
53, 4syl 17 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
65adantr 481 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → dom 𝐹 = 𝐴)
72, 6sseqtrd 3641 . . . . . . 7 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹 “ {𝑢}) ⊆ 𝐴)
8 wessf1ornlem.r . . . . . . . . . 10 (𝜑𝑅 We 𝐴)
98adantr 481 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → 𝑅 We 𝐴)
101, 5syl5sseq 3653 . . . . . . . . . . 11 (𝜑 → (𝐹 “ {𝑢}) ⊆ 𝐴)
11 wessf1ornlem.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
12 ssexg 4804 . . . . . . . . . . 11 (((𝐹 “ {𝑢}) ⊆ 𝐴𝐴𝑉) → (𝐹 “ {𝑢}) ∈ V)
1310, 11, 12syl2anc 693 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑢}) ∈ V)
1413adantr 481 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹 “ {𝑢}) ∈ V)
15 inisegn0 5497 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐹 ↔ (𝐹 “ {𝑢}) ≠ ∅)
1615biimpi 206 . . . . . . . . . 10 (𝑢 ∈ ran 𝐹 → (𝐹 “ {𝑢}) ≠ ∅)
1716adantl 482 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹 “ {𝑢}) ≠ ∅)
18 wereu 5110 . . . . . . . . 9 ((𝑅 We 𝐴 ∧ ((𝐹 “ {𝑢}) ∈ V ∧ (𝐹 “ {𝑢}) ⊆ 𝐴 ∧ (𝐹 “ {𝑢}) ≠ ∅)) → ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
199, 14, 7, 17, 18syl13anc 1328 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
20 riotacl 6625 . . . . . . . 8 (∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ (𝐹 “ {𝑢}))
2119, 20syl 17 . . . . . . 7 ((𝜑𝑢 ∈ ran 𝐹) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ (𝐹 “ {𝑢}))
227, 21sseldd 3604 . . . . . 6 ((𝜑𝑢 ∈ ran 𝐹) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴)
2322ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴)
24 wessf1ornlem.g . . . . . . 7 𝐺 = (𝑦 ∈ ran 𝐹 ↦ (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥))
25 sneq 4187 . . . . . . . . . . 11 (𝑦 = 𝑢 → {𝑦} = {𝑢})
2625imaeq2d 5466 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑢}))
2726raleqdv 3144 . . . . . . . . . 10 (𝑦 = 𝑢 → (∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥))
2826, 27riotaeqbidv 6614 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥) = (𝑥 ∈ (𝐹 “ {𝑢})∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥))
29 breq1 4656 . . . . . . . . . . . . . . 15 (𝑧 = 𝑡 → (𝑧𝑅𝑥𝑡𝑅𝑥))
3029notbid 308 . . . . . . . . . . . . . 14 (𝑧 = 𝑡 → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑡𝑅𝑥))
3130cbvralv 3171 . . . . . . . . . . . . 13 (∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑥)
3231a1i 11 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑥))
33 breq2 4657 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (𝑡𝑅𝑥𝑡𝑅𝑣))
3433notbid 308 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → (¬ 𝑡𝑅𝑥 ↔ ¬ 𝑡𝑅𝑣))
3534ralbidv 2986 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑥 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
3632, 35bitrd 268 . . . . . . . . . . 11 (𝑥 = 𝑣 → (∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
3736cbvriotav 6622 . . . . . . . . . 10 (𝑥 ∈ (𝐹 “ {𝑢})∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
3837a1i 11 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑥 ∈ (𝐹 “ {𝑢})∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
3928, 38eqtrd 2656 . . . . . . . 8 (𝑦 = 𝑢 → (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
4039cbvmptv 4750 . . . . . . 7 (𝑦 ∈ ran 𝐹 ↦ (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) = (𝑢 ∈ ran 𝐹 ↦ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
4124, 40eqtri 2644 . . . . . 6 𝐺 = (𝑢 ∈ ran 𝐹 ↦ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
4241rnmptss 6392 . . . . 5 (∀𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴 → ran 𝐺𝐴)
4323, 42syl 17 . . . 4 (𝜑 → ran 𝐺𝐴)
4411, 43ssexd 4805 . . . . 5 (𝜑 → ran 𝐺 ∈ V)
45 elpwg 4166 . . . . 5 (ran 𝐺 ∈ V → (ran 𝐺 ∈ 𝒫 𝐴 ↔ ran 𝐺𝐴))
4644, 45syl 17 . . . 4 (𝜑 → (ran 𝐺 ∈ 𝒫 𝐴 ↔ ran 𝐺𝐴))
4743, 46mpbird 247 . . 3 (𝜑 → ran 𝐺 ∈ 𝒫 𝐴)
48 dffn3 6054 . . . . . . . . . 10 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
4948biimpi 206 . . . . . . . . 9 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
503, 49syl 17 . . . . . . . 8 (𝜑𝐹:𝐴⟶ran 𝐹)
5150, 43fssresd 6071 . . . . . . 7 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹)
52 simpl 473 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺)) → 𝜑)
53 simprl 794 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺)) → 𝑤 ∈ ran 𝐺)
54 simprr 796 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺)) → 𝑡 ∈ ran 𝐺)
55 simpl 473 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺))
56 fvres 6207 . . . . . . . . . . . . . . 15 (𝑤 ∈ ran 𝐺 → ((𝐹 ↾ ran 𝐺)‘𝑤) = (𝐹𝑤))
5756eqcomd 2628 . . . . . . . . . . . . . 14 (𝑤 ∈ ran 𝐺 → (𝐹𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑤))
5857ad2antrr 762 . . . . . . . . . . . . 13 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑤))
59 simpr 477 . . . . . . . . . . . . 13 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡))
60 fvres 6207 . . . . . . . . . . . . . 14 (𝑡 ∈ ran 𝐺 → ((𝐹 ↾ ran 𝐺)‘𝑡) = (𝐹𝑡))
6160ad2antlr 763 . . . . . . . . . . . . 13 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → ((𝐹 ↾ ran 𝐺)‘𝑡) = (𝐹𝑡))
6258, 59, 613eqtrd 2660 . . . . . . . . . . . 12 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹𝑤) = (𝐹𝑡))
63623adantl1 1217 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹𝑤) = (𝐹𝑡))
64 simpl1 1064 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝜑)
65 simpl3 1066 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑡 ∈ ran 𝐺)
66 vex 3203 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ V
6741elrnmpt 5372 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ V → (𝑤 ∈ ran 𝐺 ↔ ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)))
6866, 67ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ran 𝐺 ↔ ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
6968biimpi 206 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ran 𝐺 → ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
7069adantr 481 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ran 𝐺 ∧ (𝐹𝑤) = (𝐹𝑡)) → ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
71703ad2antl2 1224 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
7271, 68sylibr 224 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑤 ∈ ran 𝐺)
73 id 22 . . . . . . . . . . . . . . . 16 ((𝐹𝑤) = (𝐹𝑡) → (𝐹𝑤) = (𝐹𝑡))
7473eqcomd 2628 . . . . . . . . . . . . . . 15 ((𝐹𝑤) = (𝐹𝑡) → (𝐹𝑡) = (𝐹𝑤))
7574adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (𝐹𝑡) = (𝐹𝑤))
76 eleq1 2689 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑤 → (𝑏 ∈ ran 𝐺𝑤 ∈ ran 𝐺))
77763anbi3d 1405 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑤 → ((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ↔ (𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺)))
78 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑤 → (𝐹𝑏) = (𝐹𝑤))
7978eqeq2d 2632 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑤 → ((𝐹𝑡) = (𝐹𝑏) ↔ (𝐹𝑡) = (𝐹𝑤)))
8077, 79anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑤 → (((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) ↔ ((𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑤))))
81 breq1 4656 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑤 → (𝑏𝑅𝑡𝑤𝑅𝑡))
8281notbid 308 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑤 → (¬ 𝑏𝑅𝑡 ↔ ¬ 𝑤𝑅𝑡))
8380, 82imbi12d 334 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤 → ((((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑡) ↔ (((𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑤)) → ¬ 𝑤𝑅𝑡)))
84 eleq1 2689 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑡 → (𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺))
85843anbi2d 1404 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑡 → ((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ↔ (𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺)))
86 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑡 → (𝐹𝑎) = (𝐹𝑡))
8786eqeq1d 2624 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑡 → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝐹𝑡) = (𝐹𝑏)))
8885, 87anbi12d 747 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑡 → (((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) ↔ ((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏))))
89 breq2 4657 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑡 → (𝑏𝑅𝑎𝑏𝑅𝑡))
9089notbid 308 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑡 → (¬ 𝑏𝑅𝑎 ↔ ¬ 𝑏𝑅𝑡))
9188, 90imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑡 → ((((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑎) ↔ (((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑡)))
92 eleq1 2689 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑏 → (𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺))
93923anbi3d 1405 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → ((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ↔ (𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺)))
94 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑏 → (𝐹𝑡) = (𝐹𝑏))
9594eqeq2d 2632 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → ((𝐹𝑎) = (𝐹𝑡) ↔ (𝐹𝑎) = (𝐹𝑏)))
9693, 95anbi12d 747 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑏 → (((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) ↔ ((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏))))
97 breq1 4656 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → (𝑡𝑅𝑎𝑏𝑅𝑎))
9897notbid 308 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑏 → (¬ 𝑡𝑅𝑎 ↔ ¬ 𝑏𝑅𝑎))
9996, 98imbi12d 334 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑏 → ((((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑎) ↔ (((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑎)))
100 eleq1 2689 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑎 → (𝑤 ∈ ran 𝐺𝑎 ∈ ran 𝐺))
1011003anbi2d 1404 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑎 → ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ↔ (𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺)))
102 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑎 → (𝐹𝑤) = (𝐹𝑎))
103102eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑎 → ((𝐹𝑤) = (𝐹𝑡) ↔ (𝐹𝑎) = (𝐹𝑡)))
104101, 103anbi12d 747 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑎 → (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ↔ ((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡))))
105 breq2 4657 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑎 → (𝑡𝑅𝑤𝑡𝑅𝑎))
106105notbid 308 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑎 → (¬ 𝑡𝑅𝑤 ↔ ¬ 𝑡𝑅𝑎))
107104, 106imbi12d 334 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑎 → ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑤) ↔ (((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑎)))
108 nfv 1843 . . . . . . . . . . . . . . . . . . . . . 22 𝑢𝜑
109 nfcv 2764 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢𝑤
110 nfmpt1 4747 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑢(𝑢 ∈ ran 𝐹 ↦ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
11141, 110nfcxfr 2762 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑢𝐺
112111nfrn 5368 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢ran 𝐺
113109, 112nfel 2777 . . . . . . . . . . . . . . . . . . . . . 22 𝑢 𝑤 ∈ ran 𝐺
114112nfcri 2758 . . . . . . . . . . . . . . . . . . . . . 22 𝑢 𝑡 ∈ ran 𝐺
115108, 113, 114nf3an 1831 . . . . . . . . . . . . . . . . . . . . 21 𝑢(𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺)
116 nfv 1843 . . . . . . . . . . . . . . . . . . . . 21 𝑢(𝐹𝑤) = (𝐹𝑡)
117115, 116nfan 1828 . . . . . . . . . . . . . . . . . . . 20 𝑢((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡))
118 nfv 1843 . . . . . . . . . . . . . . . . . . . 20 𝑢 ¬ 𝑡𝑅𝑤
119 simp3 1063 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
120119eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤)
121 simp11 1091 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝜑)
122 simp2 1062 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑢 ∈ ran 𝐹)
123 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
124 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑣 = 𝑤 → (𝑡𝑅𝑣𝑡𝑅𝑤))
125124notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑣 = 𝑤 → (¬ 𝑡𝑅𝑣 ↔ ¬ 𝑡𝑅𝑤))
126125ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑣 = 𝑤 → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤))
127126cbvriotav 6622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
128127a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤))
129123, 128eqtr2d 2657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤)
1301293ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤)
131126cbvreuv 3173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 ↔ ∃!𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
13219, 131sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ ran 𝐹) → ∃!𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
133 riota1 6629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∃!𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 → ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤))
134132, 133syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ ran 𝐹) → ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤))
1351343adant3 1081 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤))
136130, 135mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤))
137136simpld 475 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 ∈ (𝐹 “ {𝑢}))
138121, 122, 119, 137syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 ∈ (𝐹 “ {𝑢}))
139121, 122, 19syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
140126riota2 6633 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 ↔ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤))
141138, 139, 140syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 ↔ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤))
142120, 141mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
1431423adant1r 1319 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
14443sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑡 ∈ ran 𝐺) → 𝑡𝐴)
1451443adant2 1080 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → 𝑡𝐴)
146145adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑡𝐴)
1471463ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑡𝐴)
14874ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹) → (𝐹𝑡) = (𝐹𝑤))
1491483adant3 1081 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑡) = (𝐹𝑤))
150 fniniseg 6338 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 Fn 𝐴 → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)))
151121, 3, 1503syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)))
152138, 151mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢))
153152simprd 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑤) = 𝑢)
1541533adant1r 1319 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑤) = 𝑢)
155149, 154eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑡) = 𝑢)
156147, 155jca 554 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢))
157 fniniseg 6338 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 Fn 𝐴 → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
1583, 157syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
1591583ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
160159ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹) → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
1611603adant3 1081 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
162156, 161mpbird 247 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑡 ∈ (𝐹 “ {𝑢}))
163 rspa 2930 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤𝑡 ∈ (𝐹 “ {𝑢})) → ¬ 𝑡𝑅𝑤)
164143, 162, 163syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ¬ 𝑡𝑅𝑤)
1651643exp 1264 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (𝑢 ∈ ran 𝐹 → (𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → ¬ 𝑡𝑅𝑤)))
166117, 118, 165rexlimd 3026 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → ¬ 𝑡𝑅𝑤))
16771, 166mpd 15 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑤)
168107, 167chvarv 2263 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑎)
16999, 168chvarv 2263 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑎)
17091, 169chvarv 2263 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑡)
17183, 170chvarv 2263 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑤)) → ¬ 𝑤𝑅𝑡)
17264, 65, 72, 75, 171syl31anc 1329 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ¬ 𝑤𝑅𝑡)
173172, 167jca 554 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (¬ 𝑤𝑅𝑡 ∧ ¬ 𝑡𝑅𝑤))
174 weso 5105 . . . . . . . . . . . . . . . 16 (𝑅 We 𝐴𝑅 Or 𝐴)
1758, 174syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 Or 𝐴)
176175adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑅 Or 𝐴)
1771763ad2antl1 1223 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑅 Or 𝐴)
17843sselda 3603 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ran 𝐺) → 𝑤𝐴)
1791783adant3 1081 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → 𝑤𝐴)
180179adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑤𝐴)
181 sotrieq2 5063 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴 ∧ (𝑤𝐴𝑡𝐴)) → (𝑤 = 𝑡 ↔ (¬ 𝑤𝑅𝑡 ∧ ¬ 𝑡𝑅𝑤)))
182177, 180, 146, 181syl12anc 1324 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (𝑤 = 𝑡 ↔ (¬ 𝑤𝑅𝑡 ∧ ¬ 𝑡𝑅𝑤)))
183173, 182mpbird 247 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑤 = 𝑡)
18455, 63, 183syl2anc 693 . . . . . . . . . 10 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → 𝑤 = 𝑡)
185184ex 450 . . . . . . . . 9 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → (((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡))
18652, 53, 54, 185syl3anc 1326 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺)) → (((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡))
187186ralrimivva 2971 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺(((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡))
18851, 187jca 554 . . . . . 6 (𝜑 → ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺(((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡)))
189 dff13 6512 . . . . . 6 ((𝐹 ↾ ran 𝐺):ran 𝐺1-1→ran 𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺(((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡)))
190188, 189sylibr 224 . . . . 5 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺1-1→ran 𝐹)
191 riotaex 6615 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V
192191rgenw 2924 . . . . . . . . . . . . 13 𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V
193192a1i 11 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V)
19441fnmpt 6020 . . . . . . . . . . . 12 (∀𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V → 𝐺 Fn ran 𝐹)
195193, 194syl 17 . . . . . . . . . . 11 (𝜑𝐺 Fn ran 𝐹)
196 dffn3 6054 . . . . . . . . . . . 12 (𝐺 Fn ran 𝐹𝐺:ran 𝐹⟶ran 𝐺)
197196biimpi 206 . . . . . . . . . . 11 (𝐺 Fn ran 𝐹𝐺:ran 𝐹⟶ran 𝐺)
198195, 197syl 17 . . . . . . . . . 10 (𝜑𝐺:ran 𝐹⟶ran 𝐺)
199198ffvelrnda 6359 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → (𝐺𝑢) ∈ ran 𝐺)
200 fvres 6207 . . . . . . . . . . 11 ((𝐺𝑢) ∈ ran 𝐺 → ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢)) = (𝐹‘(𝐺𝑢)))
201199, 200syl 17 . . . . . . . . . 10 ((𝜑𝑢 ∈ ran 𝐹) → ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢)) = (𝐹‘(𝐺𝑢)))
20217, 15sylibr 224 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ran 𝐹) → 𝑢 ∈ ran 𝐹)
203191a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ran 𝐹) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V)
20441fvmpt2 6291 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran 𝐹 ∧ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V) → (𝐺𝑢) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
205202, 203, 204syl2anc 693 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ran 𝐹) → (𝐺𝑢) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
206205, 21eqeltrd 2701 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ ran 𝐹) → (𝐺𝑢) ∈ (𝐹 “ {𝑢}))
207 fvex 6201 . . . . . . . . . . . . . 14 (𝐺𝑢) ∈ V
208 eleq1 2689 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐺𝑢) → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝐺𝑢) ∈ (𝐹 “ {𝑢})))
209 eleq1 2689 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐺𝑢) → (𝑤𝐴 ↔ (𝐺𝑢) ∈ 𝐴))
210 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐺𝑢) → (𝐹𝑤) = (𝐹‘(𝐺𝑢)))
211210eqeq1d 2624 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐺𝑢) → ((𝐹𝑤) = 𝑢 ↔ (𝐹‘(𝐺𝑢)) = 𝑢))
212209, 211anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐺𝑢) → ((𝑤𝐴 ∧ (𝐹𝑤) = 𝑢) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))
213208, 212bibi12d 335 . . . . . . . . . . . . . . 15 (𝑤 = (𝐺𝑢) → ((𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)) ↔ ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢))))
214213imbi2d 330 . . . . . . . . . . . . . 14 (𝑤 = (𝐺𝑢) → ((𝜑 → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢))) ↔ (𝜑 → ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))))
2153, 150syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)))
216207, 214, 215vtocl 3259 . . . . . . . . . . . . 13 (𝜑 → ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))
217216adantr 481 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ ran 𝐹) → ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))
218206, 217mpbid 222 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ran 𝐹) → ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢))
219218simprd 479 . . . . . . . . . 10 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹‘(𝐺𝑢)) = 𝑢)
220201, 219eqtr2d 2657 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → 𝑢 = ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢)))
221 fveq2 6191 . . . . . . . . . . 11 (𝑤 = (𝐺𝑢) → ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢)))
222221eqeq2d 2632 . . . . . . . . . 10 (𝑤 = (𝐺𝑢) → (𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤) ↔ 𝑢 = ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢))))
223222rspcev 3309 . . . . . . . . 9 (((𝐺𝑢) ∈ ran 𝐺𝑢 = ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢))) → ∃𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤))
224199, 220, 223syl2anc 693 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → ∃𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤))
225224ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑢 ∈ ran 𝐹𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤))
22651, 225jca 554 . . . . . 6 (𝜑 → ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑢 ∈ ran 𝐹𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤)))
227 dffo3 6374 . . . . . 6 ((𝐹 ↾ ran 𝐺):ran 𝐺onto→ran 𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑢 ∈ ran 𝐹𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤)))
228226, 227sylibr 224 . . . . 5 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺onto→ran 𝐹)
229190, 228jca 554 . . . 4 (𝜑 → ((𝐹 ↾ ran 𝐺):ran 𝐺1-1→ran 𝐹 ∧ (𝐹 ↾ ran 𝐺):ran 𝐺onto→ran 𝐹))
230 df-f1o 5895 . . . 4 ((𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺1-1→ran 𝐹 ∧ (𝐹 ↾ ran 𝐺):ran 𝐺onto→ran 𝐹))
231229, 230sylibr 224 . . 3 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹)
232 nfcv 2764 . . . . . 6 𝑣𝐹
233 nfcv 2764 . . . . . . . . 9 𝑣ran 𝐹
234 nfriota1 6618 . . . . . . . . 9 𝑣(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
235233, 234nfmpt 4746 . . . . . . . 8 𝑣(𝑢 ∈ ran 𝐹 ↦ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
23641, 235nfcxfr 2762 . . . . . . 7 𝑣𝐺
237236nfrn 5368 . . . . . 6 𝑣ran 𝐺
238232, 237nfres 5398 . . . . 5 𝑣(𝐹 ↾ ran 𝐺)
239238, 237, 233nff1o 6135 . . . 4 𝑣(𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹
240 reseq2 5391 . . . . 5 (𝑣 = ran 𝐺 → (𝐹𝑣) = (𝐹 ↾ ran 𝐺))
241 id 22 . . . . 5 (𝑣 = ran 𝐺𝑣 = ran 𝐺)
242 eqidd 2623 . . . . 5 (𝑣 = ran 𝐺 → ran 𝐹 = ran 𝐹)
243240, 241, 242f1oeq123d 6133 . . . 4 (𝑣 = ran 𝐺 → ((𝐹𝑣):𝑣1-1-onto→ran 𝐹 ↔ (𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹))
244239, 243rspce 3304 . . 3 ((ran 𝐺 ∈ 𝒫 𝐴 ∧ (𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹) → ∃𝑣 ∈ 𝒫 𝐴(𝐹𝑣):𝑣1-1-onto→ran 𝐹)
24547, 231, 244syl2anc 693 . 2 (𝜑 → ∃𝑣 ∈ 𝒫 𝐴(𝐹𝑣):𝑣1-1-onto→ran 𝐹)
246 reseq2 5391 . . . 4 (𝑣 = 𝑥 → (𝐹𝑣) = (𝐹𝑥))
247 id 22 . . . 4 (𝑣 = 𝑥𝑣 = 𝑥)
248 eqidd 2623 . . . 4 (𝑣 = 𝑥 → ran 𝐹 = ran 𝐹)
249246, 247, 248f1oeq123d 6133 . . 3 (𝑣 = 𝑥 → ((𝐹𝑣):𝑣1-1-onto→ran 𝐹 ↔ (𝐹𝑥):𝑥1-1-onto→ran 𝐹))
250249cbvrexv 3172 . 2 (∃𝑣 ∈ 𝒫 𝐴(𝐹𝑣):𝑣1-1-onto→ran 𝐹 ↔ ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto→ran 𝐹)
251245, 250sylib 208 1 (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto→ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃!wreu 2914  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  cmpt 4729   Or wor 5034   We wwe 5072  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117   Fn wfn 5883  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611
This theorem is referenced by:  wessf1orn  39372
  Copyright terms: Public domain W3C validator