MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfilu Structured version   Visualization version   GIF version

Theorem iscfilu 22092
Description: The predicate "𝐹 is a Cauchy filter base on uniform space 𝑈." (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
iscfilu (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
Distinct variable groups:   𝑣,𝑎,𝐹   𝑣,𝑈
Allowed substitution hints:   𝑈(𝑎)   𝑋(𝑣,𝑎)

Proof of Theorem iscfilu
Dummy variables 𝑓 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrnust 22028 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
2 unieq 4444 . . . . . . . . 9 (𝑢 = 𝑈 𝑢 = 𝑈)
32dmeqd 5326 . . . . . . . 8 (𝑢 = 𝑈 → dom 𝑢 = dom 𝑈)
43fveq2d 6195 . . . . . . 7 (𝑢 = 𝑈 → (fBas‘dom 𝑢) = (fBas‘dom 𝑈))
5 raleq 3138 . . . . . . 7 (𝑢 = 𝑈 → (∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣))
64, 5rabeqbidv 3195 . . . . . 6 (𝑢 = 𝑈 → {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
7 df-cfilu 22091 . . . . . 6 CauFilu = (𝑢 ran UnifOn ↦ {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
8 fvex 6201 . . . . . . 7 (fBas‘dom 𝑈) ∈ V
98rabex 4813 . . . . . 6 {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} ∈ V
106, 7, 9fvmpt 6282 . . . . 5 (𝑈 ran UnifOn → (CauFilu𝑈) = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
111, 10syl 17 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (CauFilu𝑈) = {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
1211eleq2d 2687 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ 𝐹 ∈ {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣}))
13 rexeq 3139 . . . . 5 (𝑓 = 𝐹 → (∃𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1413ralbidv 2986 . . . 4 (𝑓 = 𝐹 → (∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1514elrab 3363 . . 3 (𝐹 ∈ {𝑓 ∈ (fBas‘dom 𝑈) ∣ ∀𝑣𝑈𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣} ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣))
1612, 15syl6bb 276 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
17 ustbas2 22029 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
1817fveq2d 6195 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (fBas‘𝑋) = (fBas‘dom 𝑈))
1918eleq2d 2687 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ 𝐹 ∈ (fBas‘dom 𝑈)))
2019anbi1d 741 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ((𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣) ↔ (𝐹 ∈ (fBas‘dom 𝑈) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
2116, 20bitr4d 271 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  wss 3574   cuni 4436   × cxp 5112  dom cdm 5114  ran crn 5115  cfv 5888  fBascfbas 19734  UnifOncust 22003  CauFiluccfilu 22090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ust 22004  df-cfilu 22091
This theorem is referenced by:  cfilufbas  22093  cfiluexsm  22094  fmucnd  22096  cfilufg  22097  trcfilu  22098  cfiluweak  22099  neipcfilu  22100  cfilucfil  22364
  Copyright terms: Public domain W3C validator