MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmucnd Structured version   Visualization version   GIF version

Theorem fmucnd 22096
Description: The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Hypotheses
Ref Expression
fmucnd.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
fmucnd.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
fmucnd.3 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
fmucnd.4 (𝜑𝐶 ∈ (CauFilu𝑈))
fmucnd.5 𝐷 = ran (𝑎𝐶 ↦ (𝐹𝑎))
Assertion
Ref Expression
fmucnd (𝜑𝐷 ∈ (CauFilu𝑉))
Distinct variable groups:   𝐶,𝑎   𝐷,𝑎   𝐹,𝑎   𝑉,𝑎   𝑋,𝑎   𝑌,𝑎   𝜑,𝑎
Allowed substitution hint:   𝑈(𝑎)

Proof of Theorem fmucnd
Dummy variables 𝑐 𝑏 𝑣 𝑟 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmucnd.1 . . . 4 (𝜑𝑈 ∈ (UnifOn‘𝑋))
2 fmucnd.4 . . . 4 (𝜑𝐶 ∈ (CauFilu𝑈))
3 cfilufbas 22093 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu𝑈)) → 𝐶 ∈ (fBas‘𝑋))
41, 2, 3syl2anc 693 . . 3 (𝜑𝐶 ∈ (fBas‘𝑋))
5 fmucnd.2 . . . 4 (𝜑𝑉 ∈ (UnifOn‘𝑌))
6 fmucnd.3 . . . 4 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
7 isucn 22082 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑣𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))))
87simprbda 653 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) ∧ 𝐹 ∈ (𝑈 Cnu𝑉)) → 𝐹:𝑋𝑌)
91, 5, 6, 8syl21anc 1325 . . 3 (𝜑𝐹:𝑋𝑌)
105elfvexd 6222 . . 3 (𝜑𝑌 ∈ V)
11 fmucnd.5 . . . 4 𝐷 = ran (𝑎𝐶 ↦ (𝐹𝑎))
1211fbasrn 21688 . . 3 ((𝐶 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋𝑌𝑌 ∈ V) → 𝐷 ∈ (fBas‘𝑌))
134, 9, 10, 12syl3anc 1326 . 2 (𝜑𝐷 ∈ (fBas‘𝑌))
14 simplr 792 . . . . . . . 8 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝑎𝐶)
15 eqid 2622 . . . . . . . 8 (𝐹𝑎) = (𝐹𝑎)
16 imaeq2 5462 . . . . . . . . . 10 (𝑐 = 𝑎 → (𝐹𝑐) = (𝐹𝑎))
1716eqeq2d 2632 . . . . . . . . 9 (𝑐 = 𝑎 → ((𝐹𝑎) = (𝐹𝑐) ↔ (𝐹𝑎) = (𝐹𝑎)))
1817rspcev 3309 . . . . . . . 8 ((𝑎𝐶 ∧ (𝐹𝑎) = (𝐹𝑎)) → ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐))
1914, 15, 18sylancl 694 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐))
20 imaexg 7103 . . . . . . . . 9 (𝐹 ∈ (𝑈 Cnu𝑉) → (𝐹𝑎) ∈ V)
21 eqid 2622 . . . . . . . . . 10 (𝑐𝐶 ↦ (𝐹𝑐)) = (𝑐𝐶 ↦ (𝐹𝑐))
2221elrnmpt 5372 . . . . . . . . 9 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
236, 20, 223syl 18 . . . . . . . 8 (𝜑 → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
2423ad3antrrr 766 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
2519, 24mpbird 247 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → (𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)))
26 imaeq2 5462 . . . . . . . . 9 (𝑎 = 𝑐 → (𝐹𝑎) = (𝐹𝑐))
2726cbvmptv 4750 . . . . . . . 8 (𝑎𝐶 ↦ (𝐹𝑎)) = (𝑐𝐶 ↦ (𝐹𝑐))
2827rneqi 5352 . . . . . . 7 ran (𝑎𝐶 ↦ (𝐹𝑎)) = ran (𝑐𝐶 ↦ (𝐹𝑐))
2911, 28eqtri 2644 . . . . . 6 𝐷 = ran (𝑐𝐶 ↦ (𝐹𝑐))
3025, 29syl6eleqr 2712 . . . . 5 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → (𝐹𝑎) ∈ 𝐷)
31 ffn 6045 . . . . . . . . 9 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
329, 31syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
3332ad3antrrr 766 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝐹 Fn 𝑋)
34 simplll 798 . . . . . . . 8 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝜑)
35 fbelss 21637 . . . . . . . . 9 ((𝐶 ∈ (fBas‘𝑋) ∧ 𝑎𝐶) → 𝑎𝑋)
364, 35sylan 488 . . . . . . . 8 ((𝜑𝑎𝐶) → 𝑎𝑋)
3734, 14, 36syl2anc 693 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝑎𝑋)
38 fmucndlem 22095 . . . . . . 7 ((𝐹 Fn 𝑋𝑎𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) = ((𝐹𝑎) × (𝐹𝑎)))
3933, 37, 38syl2anc 693 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) = ((𝐹𝑎) × (𝐹𝑎)))
40 eqid 2622 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
4140mpt2fun 6762 . . . . . . . 8 Fun (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
42 funimass2 5972 . . . . . . . 8 ((Fun (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4341, 42mpan 706 . . . . . . 7 ((𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4443adantl 482 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4539, 44eqsstr3d 3640 . . . . 5 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣)
46 id 22 . . . . . . . 8 (𝑏 = (𝐹𝑎) → 𝑏 = (𝐹𝑎))
4746sqxpeqd 5141 . . . . . . 7 (𝑏 = (𝐹𝑎) → (𝑏 × 𝑏) = ((𝐹𝑎) × (𝐹𝑎)))
4847sseq1d 3632 . . . . . 6 (𝑏 = (𝐹𝑎) → ((𝑏 × 𝑏) ⊆ 𝑣 ↔ ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣))
4948rspcev 3309 . . . . 5 (((𝐹𝑎) ∈ 𝐷 ∧ ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
5030, 45, 49syl2anc 693 . . . 4 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
511adantr 481 . . . . 5 ((𝜑𝑣𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
522adantr 481 . . . . 5 ((𝜑𝑣𝑉) → 𝐶 ∈ (CauFilu𝑈))
535adantr 481 . . . . . 6 ((𝜑𝑣𝑉) → 𝑉 ∈ (UnifOn‘𝑌))
546adantr 481 . . . . . 6 ((𝜑𝑣𝑉) → 𝐹 ∈ (𝑈 Cnu𝑉))
55 simpr 477 . . . . . 6 ((𝜑𝑣𝑉) → 𝑣𝑉)
56 nfcv 2764 . . . . . . 7 𝑠⟨(𝐹𝑥), (𝐹𝑦)⟩
57 nfcv 2764 . . . . . . 7 𝑡⟨(𝐹𝑥), (𝐹𝑦)⟩
58 nfcv 2764 . . . . . . 7 𝑥⟨(𝐹𝑠), (𝐹𝑡)⟩
59 nfcv 2764 . . . . . . 7 𝑦⟨(𝐹𝑠), (𝐹𝑡)⟩
60 simpl 473 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 𝑡) → 𝑥 = 𝑠)
6160fveq2d 6195 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝐹𝑥) = (𝐹𝑠))
62 simpr 477 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 𝑡) → 𝑦 = 𝑡)
6362fveq2d 6195 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝐹𝑦) = (𝐹𝑡))
6461, 63opeq12d 4410 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 𝑡) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹𝑠), (𝐹𝑡)⟩)
6556, 57, 58, 59, 64cbvmpt2 6734 . . . . . 6 (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑠𝑋, 𝑡𝑋 ↦ ⟨(𝐹𝑠), (𝐹𝑡)⟩)
6651, 53, 54, 55, 65ucnprima 22086 . . . . 5 ((𝜑𝑣𝑉) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) ∈ 𝑈)
67 cfiluexsm 22094 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu𝑈) ∧ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) ∈ 𝑈) → ∃𝑎𝐶 (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣))
6851, 52, 66, 67syl3anc 1326 . . . 4 ((𝜑𝑣𝑉) → ∃𝑎𝐶 (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣))
6950, 68r19.29a 3078 . . 3 ((𝜑𝑣𝑉) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
7069ralrimiva 2966 . 2 (𝜑 → ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
71 iscfilu 22092 . . 3 (𝑉 ∈ (UnifOn‘𝑌) → (𝐷 ∈ (CauFilu𝑉) ↔ (𝐷 ∈ (fBas‘𝑌) ∧ ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)))
725, 71syl 17 . 2 (𝜑 → (𝐷 ∈ (CauFilu𝑉) ↔ (𝐷 ∈ (fBas‘𝑌) ∧ ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)))
7313, 70, 72mpbir2and 957 1 (𝜑𝐷 ∈ (CauFilu𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  cop 4183   class class class wbr 4653  cmpt 4729   × cxp 5112  ccnv 5113  ran crn 5115  cima 5117  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  fBascfbas 19734  UnifOncust 22003   Cnucucn 22079  CauFiluccfilu 22090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-fbas 19743  df-ust 22004  df-ucn 22080  df-cfilu 22091
This theorem is referenced by:  ucnextcn  22108
  Copyright terms: Public domain W3C validator