MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfilu Structured version   Visualization version   Unicode version

Theorem iscfilu 22092
Description: The predicate " F is a Cauchy filter base on uniform space  U." (Contributed by Thierry Arnoux, 18-Nov-2017.)
Assertion
Ref Expression
iscfilu  |-  ( U  e.  (UnifOn `  X
)  ->  ( F  e.  (CauFilu `  U )  <->  ( F  e.  ( fBas `  X
)  /\  A. v  e.  U  E. a  e.  F  ( a  X.  a )  C_  v
) ) )
Distinct variable groups:    v, a, F    v, U
Allowed substitution hints:    U( a)    X( v, a)

Proof of Theorem iscfilu
Dummy variables  f  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrnust 22028 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  U  e.  U.
ran UnifOn )
2 unieq 4444 . . . . . . . . 9  |-  ( u  =  U  ->  U. u  =  U. U )
32dmeqd 5326 . . . . . . . 8  |-  ( u  =  U  ->  dom  U. u  =  dom  U. U )
43fveq2d 6195 . . . . . . 7  |-  ( u  =  U  ->  ( fBas `  dom  U. u
)  =  ( fBas `  dom  U. U ) )
5 raleq 3138 . . . . . . 7  |-  ( u  =  U  ->  ( A. v  e.  u  E. a  e.  f 
( a  X.  a
)  C_  v  <->  A. v  e.  U  E. a  e.  f  ( a  X.  a )  C_  v
) )
64, 5rabeqbidv 3195 . . . . . 6  |-  ( u  =  U  ->  { f  e.  ( fBas `  dom  U. u )  |  A. v  e.  u  E. a  e.  f  (
a  X.  a ) 
C_  v }  =  { f  e.  (
fBas `  dom  U. U
)  |  A. v  e.  U  E. a  e.  f  ( a  X.  a )  C_  v } )
7 df-cfilu 22091 . . . . . 6  |- CauFilu  =  ( u  e.  U. ran UnifOn  |->  { f  e.  ( fBas `  dom  U. u )  |  A. v  e.  u  E. a  e.  f  (
a  X.  a ) 
C_  v } )
8 fvex 6201 . . . . . . 7  |-  ( fBas `  dom  U. U )  e.  _V
98rabex 4813 . . . . . 6  |-  { f  e.  ( fBas `  dom  U. U )  |  A. v  e.  U  E. a  e.  f  (
a  X.  a ) 
C_  v }  e.  _V
106, 7, 9fvmpt 6282 . . . . 5  |-  ( U  e.  U. ran UnifOn  ->  (CauFilu `  U )  =  {
f  e.  ( fBas `  dom  U. U )  |  A. v  e.  U  E. a  e.  f  ( a  X.  a )  C_  v } )
111, 10syl 17 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  (CauFilu `  U
)  =  { f  e.  ( fBas `  dom  U. U )  |  A. v  e.  U  E. a  e.  f  (
a  X.  a ) 
C_  v } )
1211eleq2d 2687 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( F  e.  (CauFilu `  U )  <->  F  e.  { f  e.  ( fBas `  dom  U. U )  |  A. v  e.  U  E. a  e.  f  ( a  X.  a )  C_  v } ) )
13 rexeq 3139 . . . . 5  |-  ( f  =  F  ->  ( E. a  e.  f 
( a  X.  a
)  C_  v  <->  E. a  e.  F  ( a  X.  a )  C_  v
) )
1413ralbidv 2986 . . . 4  |-  ( f  =  F  ->  ( A. v  e.  U  E. a  e.  f 
( a  X.  a
)  C_  v  <->  A. v  e.  U  E. a  e.  F  ( a  X.  a )  C_  v
) )
1514elrab 3363 . . 3  |-  ( F  e.  { f  e.  ( fBas `  dom  U. U )  |  A. v  e.  U  E. a  e.  f  (
a  X.  a ) 
C_  v }  <->  ( F  e.  ( fBas `  dom  U. U )  /\  A. v  e.  U  E. a  e.  F  (
a  X.  a ) 
C_  v ) )
1612, 15syl6bb 276 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  ( F  e.  (CauFilu `  U )  <->  ( F  e.  ( fBas `  dom  U. U )  /\  A. v  e.  U  E. a  e.  F  (
a  X.  a ) 
C_  v ) ) )
17 ustbas2 22029 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  dom  U. U )
1817fveq2d 6195 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  ( fBas `  X )  =  (
fBas `  dom  U. U
) )
1918eleq2d 2687 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( F  e.  ( fBas `  X
)  <->  F  e.  ( fBas `  dom  U. U
) ) )
2019anbi1d 741 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  ( ( F  e.  ( fBas `  X )  /\  A. v  e.  U  E. a  e.  F  (
a  X.  a ) 
C_  v )  <->  ( F  e.  ( fBas `  dom  U. U )  /\  A. v  e.  U  E. a  e.  F  (
a  X.  a ) 
C_  v ) ) )
2116, 20bitr4d 271 1  |-  ( U  e.  (UnifOn `  X
)  ->  ( F  e.  (CauFilu `  U )  <->  ( F  e.  ( fBas `  X
)  /\  A. v  e.  U  E. a  e.  F  ( a  X.  a )  C_  v
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   U.cuni 4436    X. cxp 5112   dom cdm 5114   ran crn 5115   ` cfv 5888   fBascfbas 19734  UnifOncust 22003  CauFiluccfilu 22090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ust 22004  df-cfilu 22091
This theorem is referenced by:  cfilufbas  22093  cfiluexsm  22094  fmucnd  22096  cfilufg  22097  trcfilu  22098  cfiluweak  22099  neipcfilu  22100  cfilucfil  22364
  Copyright terms: Public domain W3C validator