| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscfilu | Structured version Visualization version Unicode version | ||
| Description: The predicate " |
| Ref | Expression |
|---|---|
| iscfilu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnust 22028 |
. . . . 5
| |
| 2 | unieq 4444 |
. . . . . . . . 9
| |
| 3 | 2 | dmeqd 5326 |
. . . . . . . 8
|
| 4 | 3 | fveq2d 6195 |
. . . . . . 7
|
| 5 | raleq 3138 |
. . . . . . 7
| |
| 6 | 4, 5 | rabeqbidv 3195 |
. . . . . 6
|
| 7 | df-cfilu 22091 |
. . . . . 6
| |
| 8 | fvex 6201 |
. . . . . . 7
| |
| 9 | 8 | rabex 4813 |
. . . . . 6
|
| 10 | 6, 7, 9 | fvmpt 6282 |
. . . . 5
|
| 11 | 1, 10 | syl 17 |
. . . 4
|
| 12 | 11 | eleq2d 2687 |
. . 3
|
| 13 | rexeq 3139 |
. . . . 5
| |
| 14 | 13 | ralbidv 2986 |
. . . 4
|
| 15 | 14 | elrab 3363 |
. . 3
|
| 16 | 12, 15 | syl6bb 276 |
. 2
|
| 17 | ustbas2 22029 |
. . . . 5
| |
| 18 | 17 | fveq2d 6195 |
. . . 4
|
| 19 | 18 | eleq2d 2687 |
. . 3
|
| 20 | 19 | anbi1d 741 |
. 2
|
| 21 | 16, 20 | bitr4d 271 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ust 22004 df-cfilu 22091 |
| This theorem is referenced by: cfilufbas 22093 cfiluexsm 22094 fmucnd 22096 cfilufg 22097 trcfilu 22098 cfiluweak 22099 neipcfilu 22100 cfilucfil 22364 |
| Copyright terms: Public domain | W3C validator |