Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isexid Structured version   Visualization version   Unicode version

Theorem isexid 33646
Description: The predicate  G has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
isexid.1  |-  X  =  dom  dom  G
Assertion
Ref Expression
isexid  |-  ( G  e.  A  ->  ( G  e.  ExId  <->  E. x  e.  X  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) ) )
Distinct variable groups:    x, G, y    x, X, y
Allowed substitution hints:    A( x, y)

Proof of Theorem isexid
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 dmeq 5324 . . . . 5  |-  ( g  =  G  ->  dom  g  =  dom  G )
21dmeqd 5326 . . . 4  |-  ( g  =  G  ->  dom  dom  g  =  dom  dom  G )
3 isexid.1 . . . 4  |-  X  =  dom  dom  G
42, 3syl6eqr 2674 . . 3  |-  ( g  =  G  ->  dom  dom  g  =  X )
5 oveq 6656 . . . . . 6  |-  ( g  =  G  ->  (
x g y )  =  ( x G y ) )
65eqeq1d 2624 . . . . 5  |-  ( g  =  G  ->  (
( x g y )  =  y  <->  ( x G y )  =  y ) )
7 oveq 6656 . . . . . 6  |-  ( g  =  G  ->  (
y g x )  =  ( y G x ) )
87eqeq1d 2624 . . . . 5  |-  ( g  =  G  ->  (
( y g x )  =  y  <->  ( y G x )  =  y ) )
96, 8anbi12d 747 . . . 4  |-  ( g  =  G  ->  (
( ( x g y )  =  y  /\  ( y g x )  =  y )  <->  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )
104, 9raleqbidv 3152 . . 3  |-  ( g  =  G  ->  ( A. y  e.  dom  dom  g ( ( x g y )  =  y  /\  ( y g x )  =  y )  <->  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) ) )
114, 10rexeqbidv 3153 . 2  |-  ( g  =  G  ->  ( E. x  e.  dom  dom  g A. y  e. 
dom  dom  g ( ( x g y )  =  y  /\  (
y g x )  =  y )  <->  E. x  e.  X  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) ) )
12 df-exid 33644 . 2  |-  ExId  =  { g  |  E. x  e.  dom  dom  g A. y  e.  dom  dom  g ( ( x g y )  =  y  /\  ( y g x )  =  y ) }
1311, 12elab2g 3353 1  |-  ( G  e.  A  ->  ( G  e.  ExId  <->  E. x  e.  X  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   dom cdm 5114  (class class class)co 6650    ExId cexid 33643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653  df-exid 33644
This theorem is referenced by:  opidonOLD  33651  isexid2  33654  ismndo  33671  exidres  33677
  Copyright terms: Public domain W3C validator