![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exidres | Structured version Visualization version GIF version |
Description: The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
Ref | Expression |
---|---|
exidres.1 | ⊢ 𝑋 = ran 𝐺 |
exidres.2 | ⊢ 𝑈 = (GId‘𝐺) |
exidres.3 | ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) |
Ref | Expression |
---|---|
exidres | ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → 𝐻 ∈ ExId ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exidres.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
2 | exidres.2 | . . . 4 ⊢ 𝑈 = (GId‘𝐺) | |
3 | exidres.3 | . . . 4 ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) | |
4 | 1, 2, 3 | exidreslem 33676 | . . 3 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) |
5 | oveq1 6657 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → (𝑢𝐻𝑥) = (𝑈𝐻𝑥)) | |
6 | 5 | eqeq1d 2624 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑈𝐻𝑥) = 𝑥)) |
7 | oveq2 6658 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → (𝑥𝐻𝑢) = (𝑥𝐻𝑈)) | |
8 | 7 | eqeq1d 2624 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝑥𝐻𝑢) = 𝑥 ↔ (𝑥𝐻𝑈) = 𝑥)) |
9 | 6, 8 | anbi12d 747 | . . . . 5 ⊢ (𝑢 = 𝑈 → (((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) |
10 | 9 | ralbidv 2986 | . . . 4 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) |
11 | 10 | rspcev 3309 | . . 3 ⊢ ((𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)) → ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
12 | 4, 11 | syl 17 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
13 | resexg 5442 | . . . . 5 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐺 ↾ (𝑌 × 𝑌)) ∈ V) | |
14 | 3, 13 | syl5eqel 2705 | . . . 4 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐻 ∈ V) |
15 | eqid 2622 | . . . . 5 ⊢ dom dom 𝐻 = dom dom 𝐻 | |
16 | 15 | isexid 33646 | . . . 4 ⊢ (𝐻 ∈ V → (𝐻 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
17 | 14, 16 | syl 17 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐻 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
18 | 17 | 3ad2ant1 1082 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝐻 ∈ ExId ↔ ∃𝑢 ∈ dom dom 𝐻∀𝑥 ∈ dom dom 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))) |
19 | 12, 18 | mpbird 247 | 1 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → 𝐻 ∈ ExId ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 × cxp 5112 dom cdm 5114 ran crn 5115 ↾ cres 5116 ‘cfv 5888 (class class class)co 6650 GIdcgi 27344 ExId cexid 33643 Magmacmagm 33647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-riota 6611 df-ov 6653 df-gid 27348 df-exid 33644 df-mgmOLD 33648 |
This theorem is referenced by: exidresid 33678 |
Copyright terms: Public domain | W3C validator |