MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin3ds Structured version   Visualization version   GIF version

Theorem isfin3ds 9151
Description: Property of a III-finite set (descending sequence version). (Contributed by Mario Carneiro, 16-May-2015.)
Hypothesis
Ref Expression
isfin3ds.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
isfin3ds (𝐴𝑉 → (𝐴𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
Distinct variable group:   𝑎,𝑏,𝑓,𝑔,𝑥,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑓,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑓,𝑔,𝑎,𝑏)

Proof of Theorem isfin3ds
StepHypRef Expression
1 suceq 5790 . . . . . . . . 9 (𝑏 = 𝑥 → suc 𝑏 = suc 𝑥)
21fveq2d 6195 . . . . . . . 8 (𝑏 = 𝑥 → (𝑎‘suc 𝑏) = (𝑎‘suc 𝑥))
3 fveq2 6191 . . . . . . . 8 (𝑏 = 𝑥 → (𝑎𝑏) = (𝑎𝑥))
42, 3sseq12d 3634 . . . . . . 7 (𝑏 = 𝑥 → ((𝑎‘suc 𝑏) ⊆ (𝑎𝑏) ↔ (𝑎‘suc 𝑥) ⊆ (𝑎𝑥)))
54cbvralv 3171 . . . . . 6 (∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) ↔ ∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥))
6 fveq1 6190 . . . . . . . 8 (𝑎 = 𝑓 → (𝑎‘suc 𝑥) = (𝑓‘suc 𝑥))
7 fveq1 6190 . . . . . . . 8 (𝑎 = 𝑓 → (𝑎𝑥) = (𝑓𝑥))
86, 7sseq12d 3634 . . . . . . 7 (𝑎 = 𝑓 → ((𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ (𝑓‘suc 𝑥) ⊆ (𝑓𝑥)))
98ralbidv 2986 . . . . . 6 (𝑎 = 𝑓 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ ∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥)))
105, 9syl5bb 272 . . . . 5 (𝑎 = 𝑓 → (∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) ↔ ∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥)))
11 rneq 5351 . . . . . . 7 (𝑎 = 𝑓 → ran 𝑎 = ran 𝑓)
1211inteqd 4480 . . . . . 6 (𝑎 = 𝑓 ran 𝑎 = ran 𝑓)
1312, 11eleq12d 2695 . . . . 5 (𝑎 = 𝑓 → ( ran 𝑎 ∈ ran 𝑎 ran 𝑓 ∈ ran 𝑓))
1410, 13imbi12d 334 . . . 4 (𝑎 = 𝑓 → ((∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1514cbvralv 3171 . . 3 (∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑓 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
16 pweq 4161 . . . . 5 (𝑔 = 𝐴 → 𝒫 𝑔 = 𝒫 𝐴)
1716oveq1d 6665 . . . 4 (𝑔 = 𝐴 → (𝒫 𝑔𝑚 ω) = (𝒫 𝐴𝑚 ω))
1817raleqdv 3144 . . 3 (𝑔 = 𝐴 → (∀𝑓 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓) ↔ ∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1915, 18syl5bb 272 . 2 (𝑔 = 𝐴 → (∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
20 isfin3ds.f . 2 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
2119, 20elab2g 3353 1 (𝐴𝑉 → (𝐴𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wss 3574  𝒫 cpw 4158   cint 4475  ran crn 5115  suc csuc 5725  cfv 5888  (class class class)co 6650  ωcom 7065  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125  df-suc 5729  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  ssfin3ds  9152  fin23lem17  9160  fin23lem39  9172  fin23lem40  9173  isf32lem12  9186  isfin3-3  9190
  Copyright terms: Public domain W3C validator