MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem17 Structured version   Visualization version   GIF version

Theorem fin23lem17 9160
Description: Lemma for fin23 9211. By ? Fin3DS ? , 𝑈 achieves its minimum (𝑋 in the synopsis above, but we will not be assigning a symbol here). TODO: Fix comment; math symbol Fin3DS does not exist. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem17 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ∈ ran 𝑈)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑥,𝑎   𝐹,𝑎,𝑡   𝑉,𝑎   𝑥,𝑎   𝑈,𝑎,𝑖,𝑢   𝑔,𝑎
Allowed substitution hints:   𝑈(𝑥,𝑡,𝑔)   𝐹(𝑥,𝑢,𝑔,𝑖)   𝑉(𝑥,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem17
Dummy variables 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin23lem.a . . . . . 6 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
21fnseqom 7550 . . . . 5 𝑈 Fn ω
3 dffn3 6054 . . . . 5 (𝑈 Fn ω ↔ 𝑈:ω⟶ran 𝑈)
42, 3mpbi 220 . . . 4 𝑈:ω⟶ran 𝑈
5 pwuni 4474 . . . . 5 ran 𝑈 ⊆ 𝒫 ran 𝑈
61fin23lem16 9157 . . . . . 6 ran 𝑈 = ran 𝑡
76pweqi 4162 . . . . 5 𝒫 ran 𝑈 = 𝒫 ran 𝑡
85, 7sseqtri 3637 . . . 4 ran 𝑈 ⊆ 𝒫 ran 𝑡
9 fss 6056 . . . 4 ((𝑈:ω⟶ran 𝑈 ∧ ran 𝑈 ⊆ 𝒫 ran 𝑡) → 𝑈:ω⟶𝒫 ran 𝑡)
104, 8, 9mp2an 708 . . 3 𝑈:ω⟶𝒫 ran 𝑡
11 vex 3203 . . . . . . 7 𝑡 ∈ V
1211rnex 7100 . . . . . 6 ran 𝑡 ∈ V
1312uniex 6953 . . . . 5 ran 𝑡 ∈ V
1413pwex 4848 . . . 4 𝒫 ran 𝑡 ∈ V
15 f1f 6101 . . . . . 6 (𝑡:ω–1-1𝑉𝑡:ω⟶𝑉)
16 dmfex 7124 . . . . . 6 ((𝑡 ∈ V ∧ 𝑡:ω⟶𝑉) → ω ∈ V)
1711, 15, 16sylancr 695 . . . . 5 (𝑡:ω–1-1𝑉 → ω ∈ V)
1817adantl 482 . . . 4 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ω ∈ V)
19 elmapg 7870 . . . 4 ((𝒫 ran 𝑡 ∈ V ∧ ω ∈ V) → (𝑈 ∈ (𝒫 ran 𝑡𝑚 ω) ↔ 𝑈:ω⟶𝒫 ran 𝑡))
2014, 18, 19sylancr 695 . . 3 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → (𝑈 ∈ (𝒫 ran 𝑡𝑚 ω) ↔ 𝑈:ω⟶𝒫 ran 𝑡))
2110, 20mpbiri 248 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → 𝑈 ∈ (𝒫 ran 𝑡𝑚 ω))
22 fin23lem17.f . . . . 5 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
2322isfin3ds 9151 . . . 4 ( ran 𝑡𝐹 → ( ran 𝑡𝐹 ↔ ∀𝑏 ∈ (𝒫 ran 𝑡𝑚 ω)(∀𝑐 ∈ ω (𝑏‘suc 𝑐) ⊆ (𝑏𝑐) → ran 𝑏 ∈ ran 𝑏)))
2423ibi 256 . . 3 ( ran 𝑡𝐹 → ∀𝑏 ∈ (𝒫 ran 𝑡𝑚 ω)(∀𝑐 ∈ ω (𝑏‘suc 𝑐) ⊆ (𝑏𝑐) → ran 𝑏 ∈ ran 𝑏))
2524adantr 481 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ∀𝑏 ∈ (𝒫 ran 𝑡𝑚 ω)(∀𝑐 ∈ ω (𝑏‘suc 𝑐) ⊆ (𝑏𝑐) → ran 𝑏 ∈ ran 𝑏))
261fin23lem13 9154 . . . 4 (𝑐 ∈ ω → (𝑈‘suc 𝑐) ⊆ (𝑈𝑐))
2726rgen 2922 . . 3 𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈𝑐)
2827a1i 11 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈𝑐))
29 fveq1 6190 . . . . . 6 (𝑏 = 𝑈 → (𝑏‘suc 𝑐) = (𝑈‘suc 𝑐))
30 fveq1 6190 . . . . . 6 (𝑏 = 𝑈 → (𝑏𝑐) = (𝑈𝑐))
3129, 30sseq12d 3634 . . . . 5 (𝑏 = 𝑈 → ((𝑏‘suc 𝑐) ⊆ (𝑏𝑐) ↔ (𝑈‘suc 𝑐) ⊆ (𝑈𝑐)))
3231ralbidv 2986 . . . 4 (𝑏 = 𝑈 → (∀𝑐 ∈ ω (𝑏‘suc 𝑐) ⊆ (𝑏𝑐) ↔ ∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈𝑐)))
33 rneq 5351 . . . . . 6 (𝑏 = 𝑈 → ran 𝑏 = ran 𝑈)
3433inteqd 4480 . . . . 5 (𝑏 = 𝑈 ran 𝑏 = ran 𝑈)
3534, 33eleq12d 2695 . . . 4 (𝑏 = 𝑈 → ( ran 𝑏 ∈ ran 𝑏 ran 𝑈 ∈ ran 𝑈))
3632, 35imbi12d 334 . . 3 (𝑏 = 𝑈 → ((∀𝑐 ∈ ω (𝑏‘suc 𝑐) ⊆ (𝑏𝑐) → ran 𝑏 ∈ ran 𝑏) ↔ (∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈𝑐) → ran 𝑈 ∈ ran 𝑈)))
3736rspcv 3305 . 2 (𝑈 ∈ (𝒫 ran 𝑡𝑚 ω) → (∀𝑏 ∈ (𝒫 ran 𝑡𝑚 ω)(∀𝑐 ∈ ω (𝑏‘suc 𝑐) ⊆ (𝑏𝑐) → ran 𝑏 ∈ ran 𝑏) → (∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈𝑐) → ran 𝑈 ∈ ran 𝑈)))
3821, 25, 28, 37syl3c 66 1 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ∈ ran 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  Vcvv 3200  cin 3573  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158   cuni 4436   cint 4475  ran crn 5115  suc csuc 5725   Fn wfn 5883  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  seq𝜔cseqom 7542  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-map 7859
This theorem is referenced by:  fin23lem21  9161
  Copyright terms: Public domain W3C validator