| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfin3ds | Structured version Visualization version Unicode version | ||
| Description: Property of a III-finite set (descending sequence version). (Contributed by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| isfin3ds.f |
|
| Ref | Expression |
|---|---|
| isfin3ds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq 5790 |
. . . . . . . . 9
| |
| 2 | 1 | fveq2d 6195 |
. . . . . . . 8
|
| 3 | fveq2 6191 |
. . . . . . . 8
| |
| 4 | 2, 3 | sseq12d 3634 |
. . . . . . 7
|
| 5 | 4 | cbvralv 3171 |
. . . . . 6
|
| 6 | fveq1 6190 |
. . . . . . . 8
| |
| 7 | fveq1 6190 |
. . . . . . . 8
| |
| 8 | 6, 7 | sseq12d 3634 |
. . . . . . 7
|
| 9 | 8 | ralbidv 2986 |
. . . . . 6
|
| 10 | 5, 9 | syl5bb 272 |
. . . . 5
|
| 11 | rneq 5351 |
. . . . . . 7
| |
| 12 | 11 | inteqd 4480 |
. . . . . 6
|
| 13 | 12, 11 | eleq12d 2695 |
. . . . 5
|
| 14 | 10, 13 | imbi12d 334 |
. . . 4
|
| 15 | 14 | cbvralv 3171 |
. . 3
|
| 16 | pweq 4161 |
. . . . 5
| |
| 17 | 16 | oveq1d 6665 |
. . . 4
|
| 18 | 17 | raleqdv 3144 |
. . 3
|
| 19 | 15, 18 | syl5bb 272 |
. 2
|
| 20 | isfin3ds.f |
. 2
| |
| 21 | 19, 20 | elab2g 3353 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-cnv 5122 df-dm 5124 df-rn 5125 df-suc 5729 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: ssfin3ds 9152 fin23lem17 9160 fin23lem39 9172 fin23lem40 9173 isf32lem12 9186 isfin3-3 9190 |
| Copyright terms: Public domain | W3C validator |