![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version |
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | inteq 4478 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∩ cint 4475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-int 4476 |
This theorem is referenced by: intprg 4511 elreldm 5350 ordintdif 5774 fniinfv 6257 onsucmin 7021 elxp5 7111 1stval2 7185 2ndval2 7186 fundmen 8030 xpsnen 8044 unblem2 8213 unblem3 8214 fiint 8237 elfi2 8320 fi0 8326 elfiun 8336 tcvalg 8614 tz9.12lem3 8652 rankvalb 8660 rankvalg 8680 ranksnb 8690 rankonidlem 8691 cardval3 8778 cardidm 8785 cfval 9069 cflim3 9084 coftr 9095 isfin3ds 9151 fin23lem17 9160 fin23lem39 9172 isf33lem 9188 isf34lem5 9200 isf34lem6 9202 wuncval 9564 tskmval 9661 cleq1 13722 dfrtrcl2 13802 mrcfval 16268 mrcval 16270 cycsubg2 17631 efgval 18130 lspfval 18973 lspval 18975 lsppropd 19018 aspval 19328 aspval2 19347 clsfval 20829 clsval 20841 clsval2 20854 hauscmplem 21209 cmpfi 21211 1stcfb 21248 fclscmp 21834 spanval 28192 chsupid 28271 sigagenval 30203 kur14 31198 mclsval 31460 scutval 31911 igenval 33860 pclfvalN 35175 pclvalN 35176 diaintclN 36347 docaffvalN 36410 docafvalN 36411 docavalN 36412 dibintclN 36456 dihglb2 36631 dihintcl 36633 mzpval 37295 dnnumch3lem 37616 aomclem8 37631 rgspnval 37738 iotain 38618 salgenval 40541 |
Copyright terms: Public domain | W3C validator |