Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne Structured version   Visualization version   GIF version

Theorem isfne 32334
Description: The predicate "𝐵 is finer than 𝐴." This property is, in a sense, the opposite of refinement, as refinement requires every element to be a subset of an element of the original and fineness requires that every element of the original have a subset in the finer cover containing every point. I do not know of a literature reference for this. (Contributed by Jeff Hankins, 28-Sep-2009.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem isfne
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnerel 32333 . . . . 5 Rel Fne
21brrelexi 5158 . . . 4 (𝐴Fne𝐵𝐴 ∈ V)
32anim1i 592 . . 3 ((𝐴Fne𝐵𝐵𝐶) → (𝐴 ∈ V ∧ 𝐵𝐶))
43ancoms 469 . 2 ((𝐵𝐶𝐴Fne𝐵) → (𝐴 ∈ V ∧ 𝐵𝐶))
5 simpr 477 . . . . 5 ((𝐵𝐶𝑋 = 𝑌) → 𝑋 = 𝑌)
6 isfne.1 . . . . 5 𝑋 = 𝐴
7 isfne.2 . . . . 5 𝑌 = 𝐵
85, 6, 73eqtr3g 2679 . . . 4 ((𝐵𝐶𝑋 = 𝑌) → 𝐴 = 𝐵)
9 simpr 477 . . . . . . 7 ((𝐵𝐶 𝐴 = 𝐵) → 𝐴 = 𝐵)
10 uniexg 6955 . . . . . . . 8 (𝐵𝐶 𝐵 ∈ V)
1110adantr 481 . . . . . . 7 ((𝐵𝐶 𝐴 = 𝐵) → 𝐵 ∈ V)
129, 11eqeltrd 2701 . . . . . 6 ((𝐵𝐶 𝐴 = 𝐵) → 𝐴 ∈ V)
13 uniexb 6973 . . . . . 6 (𝐴 ∈ V ↔ 𝐴 ∈ V)
1412, 13sylibr 224 . . . . 5 ((𝐵𝐶 𝐴 = 𝐵) → 𝐴 ∈ V)
15 simpl 473 . . . . 5 ((𝐵𝐶 𝐴 = 𝐵) → 𝐵𝐶)
1614, 15jca 554 . . . 4 ((𝐵𝐶 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵𝐶))
178, 16syldan 487 . . 3 ((𝐵𝐶𝑋 = 𝑌) → (𝐴 ∈ V ∧ 𝐵𝐶))
1817adantrr 753 . 2 ((𝐵𝐶 ∧ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))) → (𝐴 ∈ V ∧ 𝐵𝐶))
19 unieq 4444 . . . . . 6 (𝑟 = 𝐴 𝑟 = 𝐴)
2019, 6syl6eqr 2674 . . . . 5 (𝑟 = 𝐴 𝑟 = 𝑋)
2120eqeq1d 2624 . . . 4 (𝑟 = 𝐴 → ( 𝑟 = 𝑠𝑋 = 𝑠))
22 raleq 3138 . . . 4 (𝑟 = 𝐴 → (∀𝑥𝑟 𝑥 (𝑠 ∩ 𝒫 𝑥) ↔ ∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥)))
2321, 22anbi12d 747 . . 3 (𝑟 = 𝐴 → (( 𝑟 = 𝑠 ∧ ∀𝑥𝑟 𝑥 (𝑠 ∩ 𝒫 𝑥)) ↔ (𝑋 = 𝑠 ∧ ∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥))))
24 unieq 4444 . . . . . 6 (𝑠 = 𝐵 𝑠 = 𝐵)
2524, 7syl6eqr 2674 . . . . 5 (𝑠 = 𝐵 𝑠 = 𝑌)
2625eqeq2d 2632 . . . 4 (𝑠 = 𝐵 → (𝑋 = 𝑠𝑋 = 𝑌))
27 ineq1 3807 . . . . . . 7 (𝑠 = 𝐵 → (𝑠 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
2827unieqd 4446 . . . . . 6 (𝑠 = 𝐵 (𝑠 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
2928sseq2d 3633 . . . . 5 (𝑠 = 𝐵 → (𝑥 (𝑠 ∩ 𝒫 𝑥) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
3029ralbidv 2986 . . . 4 (𝑠 = 𝐵 → (∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥) ↔ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥)))
3126, 30anbi12d 747 . . 3 (𝑠 = 𝐵 → ((𝑋 = 𝑠 ∧ ∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
32 df-fne 32332 . . 3 Fne = {⟨𝑟, 𝑠⟩ ∣ ( 𝑟 = 𝑠 ∧ ∀𝑥𝑟 𝑥 (𝑠 ∩ 𝒫 𝑥))}
3323, 31, 32brabg 4994 . 2 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
344, 18, 33pm5.21nd 941 1 (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436   class class class wbr 4653  Fnecfne 32331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-fne 32332
This theorem is referenced by:  isfne4  32335
  Copyright terms: Public domain W3C validator