![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelexi | Structured version Visualization version GIF version |
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelexi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex 5156 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
3 | 1, 2 | mpan 706 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 Vcvv 3200 class class class wbr 4653 Rel wrel 5119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 |
This theorem is referenced by: nprrel 5161 vtoclr 5164 opeliunxp2 5260 ideqg 5273 issetid 5276 dffv2 6271 brfvopabrbr 6279 brrpssg 6939 opeliunxp2f 7336 brtpos2 7358 brdomg 7965 isfi 7979 en1uniel 8028 domdifsn 8043 undom 8048 xpdom2 8055 xpdom1g 8057 sbth 8080 dom0 8088 sdom0 8092 sdomirr 8097 sdomdif 8108 fodomr 8111 pwdom 8112 xpen 8123 pwen 8133 php3 8146 sucdom2 8156 sdom1 8160 fineqv 8175 f1finf1o 8187 infsdomnn 8221 relprcnfsupp 8278 fsuppimp 8281 fsuppunbi 8296 mapfien2 8314 harword 8470 brwdom 8472 domwdom 8479 brwdom3i 8488 unwdomg 8489 xpwdomg 8490 infdifsn 8554 ac10ct 8857 inffien 8886 iunfictbso 8937 cdaen 8995 cdadom1 9008 cdafi 9012 cdainflem 9013 cdalepw 9018 unctb 9027 infcdaabs 9028 infunabs 9029 infmap2 9040 cfslb2n 9090 fin4i 9120 isfin5 9121 isfin6 9122 fin4en1 9131 isfin4-3 9137 isfin32i 9187 fin45 9214 fin56 9215 fin67 9217 hsmexlem1 9248 hsmexlem3 9250 axcc3 9260 ttukeylem1 9331 brdom3 9350 iundom2g 9362 iundom 9364 iunctb 9396 gchi 9446 engch 9450 gchdomtri 9451 fpwwe2lem6 9457 fpwwe2lem7 9458 fpwwe2lem9 9460 gchpwdom 9492 prcdnq 9815 reexALT 11826 hasheni 13136 hashdomi 13169 brfi1indALT 13282 brfi1indALTOLD 13288 climcl 14230 climi 14241 climrlim2 14278 climrecl 14314 climge0 14315 iseralt 14415 climfsum 14552 structex 15868 issubc 16495 pmtrfv 17872 dprdval 18402 frgpcyg 19922 lindff 20154 lindfind 20155 f1lindf 20161 lindfmm 20166 lsslindf 20169 lbslcic 20180 1stcrestlem 21255 2ndcdisj2 21260 dis2ndc 21263 hauspwdom 21304 refbas 21313 refssex 21314 reftr 21317 refun0 21318 ovoliunnul 23275 uniiccdif 23346 dvle 23770 subgrv 26162 cyclnspth 26695 hlimi 28045 brsset 31996 brbigcup 32005 elfix2 32011 brcolinear2 32165 isfne 32334 refssfne 32353 ovoliunnfl 33451 voliunnfl 33453 volsupnfl 33454 brabg2 33510 heiborlem4 33613 isrngo 33696 isdivrngo 33749 fphpd 37380 ctbnfien 37382 climd 39904 climuzlem 39975 rlimdmafv 41257 linindsv 42234 |
Copyright terms: Public domain | W3C validator |