Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne4 Structured version   Visualization version   GIF version

Theorem isfne4 32335
Description: The predicate "𝐵 is finer than 𝐴 " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne4 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))

Proof of Theorem isfne4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnerel 32333 . . 3 Rel Fne
21brrelex2i 5159 . 2 (𝐴Fne𝐵𝐵 ∈ V)
3 simpl 473 . . . . 5 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝑋 = 𝑌)
4 isfne.1 . . . . 5 𝑋 = 𝐴
5 isfne.2 . . . . 5 𝑌 = 𝐵
63, 4, 53eqtr3g 2679 . . . 4 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐴 = 𝐵)
7 fvex 6201 . . . . . . 7 (topGen‘𝐵) ∈ V
87ssex 4802 . . . . . 6 (𝐴 ⊆ (topGen‘𝐵) → 𝐴 ∈ V)
98adantl 482 . . . . 5 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐴 ∈ V)
10 uniexb 6973 . . . . 5 (𝐴 ∈ V ↔ 𝐴 ∈ V)
119, 10sylib 208 . . . 4 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐴 ∈ V)
126, 11eqeltrrd 2702 . . 3 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V)
13 uniexb 6973 . . 3 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1412, 13sylibr 224 . 2 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V)
154, 5isfne 32334 . . 3 (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
16 dfss3 3592 . . . . 5 (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐴 𝑥 ∈ (topGen‘𝐵))
17 eltg 20761 . . . . . 6 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
1817ralbidv 2986 . . . . 5 (𝐵 ∈ V → (∀𝑥𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥)))
1916, 18syl5bb 272 . . . 4 (𝐵 ∈ V → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥)))
2019anbi2d 740 . . 3 (𝐵 ∈ V → ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
2115, 20bitr4d 271 . 2 (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵))))
222, 14, 21pm5.21nii 368 1 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436   class class class wbr 4653  cfv 5888  topGenctg 16098  Fnecfne 32331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104  df-fne 32332
This theorem is referenced by:  isfne4b  32336  isfne2  32337  isfne3  32338  fnebas  32339  fnetg  32340  topfne  32349  fnemeet1  32361  fnemeet2  32362  fnejoin1  32363  fnejoin2  32364
  Copyright terms: Public domain W3C validator