| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne | Structured version Visualization version Unicode version | ||
| Description: The predicate " |
| Ref | Expression |
|---|---|
| isfne.1 |
|
| isfne.2 |
|
| Ref | Expression |
|---|---|
| isfne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnerel 32333 |
. . . . 5
| |
| 2 | 1 | brrelexi 5158 |
. . . 4
|
| 3 | 2 | anim1i 592 |
. . 3
|
| 4 | 3 | ancoms 469 |
. 2
|
| 5 | simpr 477 |
. . . . 5
| |
| 6 | isfne.1 |
. . . . 5
| |
| 7 | isfne.2 |
. . . . 5
| |
| 8 | 5, 6, 7 | 3eqtr3g 2679 |
. . . 4
|
| 9 | simpr 477 |
. . . . . . 7
| |
| 10 | uniexg 6955 |
. . . . . . . 8
| |
| 11 | 10 | adantr 481 |
. . . . . . 7
|
| 12 | 9, 11 | eqeltrd 2701 |
. . . . . 6
|
| 13 | uniexb 6973 |
. . . . . 6
| |
| 14 | 12, 13 | sylibr 224 |
. . . . 5
|
| 15 | simpl 473 |
. . . . 5
| |
| 16 | 14, 15 | jca 554 |
. . . 4
|
| 17 | 8, 16 | syldan 487 |
. . 3
|
| 18 | 17 | adantrr 753 |
. 2
|
| 19 | unieq 4444 |
. . . . . 6
| |
| 20 | 19, 6 | syl6eqr 2674 |
. . . . 5
|
| 21 | 20 | eqeq1d 2624 |
. . . 4
|
| 22 | raleq 3138 |
. . . 4
| |
| 23 | 21, 22 | anbi12d 747 |
. . 3
|
| 24 | unieq 4444 |
. . . . . 6
| |
| 25 | 24, 7 | syl6eqr 2674 |
. . . . 5
|
| 26 | 25 | eqeq2d 2632 |
. . . 4
|
| 27 | ineq1 3807 |
. . . . . . 7
| |
| 28 | 27 | unieqd 4446 |
. . . . . 6
|
| 29 | 28 | sseq2d 3633 |
. . . . 5
|
| 30 | 29 | ralbidv 2986 |
. . . 4
|
| 31 | 26, 30 | anbi12d 747 |
. . 3
|
| 32 | df-fne 32332 |
. . 3
| |
| 33 | 23, 31, 32 | brabg 4994 |
. 2
|
| 34 | 4, 18, 33 | pm5.21nd 941 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-fne 32332 |
| This theorem is referenced by: isfne4 32335 |
| Copyright terms: Public domain | W3C validator |