![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne4b | Structured version Visualization version GIF version |
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
isfne.1 | ⊢ 𝑋 = ∪ 𝐴 |
isfne.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
isfne4b | ⊢ (𝐵 ∈ 𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
2 | isfne.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐴 | |
3 | isfne.2 | . . . . . . 7 ⊢ 𝑌 = ∪ 𝐵 | |
4 | 1, 2, 3 | 3eqtr3g 2679 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐴 = ∪ 𝐵) |
5 | uniexg 6955 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐵 ∈ V) |
7 | 4, 6 | eqeltrd 2701 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐴 ∈ V) |
8 | uniexb 6973 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
9 | 7, 8 | sylibr 224 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝐴 ∈ V) |
10 | simpl 473 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝐵 ∈ 𝑉) | |
11 | tgss3 20790 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵))) | |
12 | 9, 10, 11 | syl2anc 693 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵))) |
13 | 12 | pm5.32da 673 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)))) |
14 | 2, 3 | isfne4 32335 | . 2 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
15 | 13, 14 | syl6rbbr 279 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ⊆ wss 3574 ∪ cuni 4436 class class class wbr 4653 ‘cfv 5888 topGenctg 16098 Fnecfne 32331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-fne 32332 |
This theorem is referenced by: fnetr 32346 fneval 32347 |
Copyright terms: Public domain | W3C validator |