Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne4b Structured version   Visualization version   Unicode version

Theorem isfne4b 32336
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1  |-  X  = 
U. A
isfne.2  |-  Y  = 
U. B
Assertion
Ref Expression
isfne4b  |-  ( B  e.  V  ->  ( A Fne B  <->  ( X  =  Y  /\  ( topGen `
 A )  C_  ( topGen `  B )
) ) )

Proof of Theorem isfne4b
StepHypRef Expression
1 simpr 477 . . . . . . 7  |-  ( ( B  e.  V  /\  X  =  Y )  ->  X  =  Y )
2 isfne.1 . . . . . . 7  |-  X  = 
U. A
3 isfne.2 . . . . . . 7  |-  Y  = 
U. B
41, 2, 33eqtr3g 2679 . . . . . 6  |-  ( ( B  e.  V  /\  X  =  Y )  ->  U. A  =  U. B )
5 uniexg 6955 . . . . . . 7  |-  ( B  e.  V  ->  U. B  e.  _V )
65adantr 481 . . . . . 6  |-  ( ( B  e.  V  /\  X  =  Y )  ->  U. B  e.  _V )
74, 6eqeltrd 2701 . . . . 5  |-  ( ( B  e.  V  /\  X  =  Y )  ->  U. A  e.  _V )
8 uniexb 6973 . . . . 5  |-  ( A  e.  _V  <->  U. A  e. 
_V )
97, 8sylibr 224 . . . 4  |-  ( ( B  e.  V  /\  X  =  Y )  ->  A  e.  _V )
10 simpl 473 . . . 4  |-  ( ( B  e.  V  /\  X  =  Y )  ->  B  e.  V )
11 tgss3 20790 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( ( topGen `  A
)  C_  ( topGen `  B )  <->  A  C_  ( topGen `
 B ) ) )
129, 10, 11syl2anc 693 . . 3  |-  ( ( B  e.  V  /\  X  =  Y )  ->  ( ( topGen `  A
)  C_  ( topGen `  B )  <->  A  C_  ( topGen `
 B ) ) )
1312pm5.32da 673 . 2  |-  ( B  e.  V  ->  (
( X  =  Y  /\  ( topGen `  A
)  C_  ( topGen `  B ) )  <->  ( X  =  Y  /\  A  C_  ( topGen `  B )
) ) )
142, 3isfne4 32335 . 2  |-  ( A Fne B  <->  ( X  =  Y  /\  A  C_  ( topGen `  B )
) )
1513, 14syl6rbbr 279 1  |-  ( B  e.  V  ->  ( A Fne B  <->  ( X  =  Y  /\  ( topGen `
 A )  C_  ( topGen `  B )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   U.cuni 4436   class class class wbr 4653   ` cfv 5888   topGenctg 16098   Fnecfne 32331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104  df-fne 32332
This theorem is referenced by:  fnetr  32346  fneval  32347
  Copyright terms: Public domain W3C validator