Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrcd1 Structured version   Visualization version   GIF version

Theorem ismrcd1 37261
Description: Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 16277), isotone (satisfies mrcss 16276), and idempotent (satisfies mrcidm 16279) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 37262 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
ismrcd.b (𝜑𝐵𝑉)
ismrcd.f (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
ismrcd.e ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
ismrcd.m ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
ismrcd.i ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
Assertion
Ref Expression
ismrcd1 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦

Proof of Theorem ismrcd1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . . 4 (𝐹 ∩ I ) ⊆ 𝐹
2 dmss 5323 . . . 4 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
31, 2ax-mp 5 . . 3 dom (𝐹 ∩ I ) ⊆ dom 𝐹
4 ismrcd.f . . . 4 (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
5 fdm 6051 . . . 4 (𝐹:𝒫 𝐵⟶𝒫 𝐵 → dom 𝐹 = 𝒫 𝐵)
64, 5syl 17 . . 3 (𝜑 → dom 𝐹 = 𝒫 𝐵)
73, 6syl5sseq 3653 . 2 (𝜑 → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
8 ssid 3624 . . . . . . 7 𝐵𝐵
9 ismrcd.b . . . . . . . 8 (𝜑𝐵𝑉)
10 elpwg 4166 . . . . . . . 8 (𝐵𝑉 → (𝐵 ∈ 𝒫 𝐵𝐵𝐵))
119, 10syl 17 . . . . . . 7 (𝜑 → (𝐵 ∈ 𝒫 𝐵𝐵𝐵))
128, 11mpbiri 248 . . . . . 6 (𝜑𝐵 ∈ 𝒫 𝐵)
134, 12ffvelrnd 6360 . . . . 5 (𝜑 → (𝐹𝐵) ∈ 𝒫 𝐵)
1413elpwid 4170 . . . 4 (𝜑 → (𝐹𝐵) ⊆ 𝐵)
15 selpw 4165 . . . . . . 7 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
16 ismrcd.e . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
1715, 16sylan2b 492 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝐵) → 𝑥 ⊆ (𝐹𝑥))
1817ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥))
19 id 22 . . . . . . 7 (𝑥 = 𝐵𝑥 = 𝐵)
20 fveq2 6191 . . . . . . 7 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
2119, 20sseq12d 3634 . . . . . 6 (𝑥 = 𝐵 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝐵 ⊆ (𝐹𝐵)))
2221rspcva 3307 . . . . 5 ((𝐵 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥)) → 𝐵 ⊆ (𝐹𝐵))
2312, 18, 22syl2anc 693 . . . 4 (𝜑𝐵 ⊆ (𝐹𝐵))
2414, 23eqssd 3620 . . 3 (𝜑 → (𝐹𝐵) = 𝐵)
25 ffn 6045 . . . . 5 (𝐹:𝒫 𝐵⟶𝒫 𝐵𝐹 Fn 𝒫 𝐵)
264, 25syl 17 . . . 4 (𝜑𝐹 Fn 𝒫 𝐵)
27 fnelfp 6441 . . . 4 ((𝐹 Fn 𝒫 𝐵𝐵 ∈ 𝒫 𝐵) → (𝐵 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝐵) = 𝐵))
2826, 12, 27syl2anc 693 . . 3 (𝜑 → (𝐵 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝐵) = 𝐵))
2924, 28mpbird 247 . 2 (𝜑𝐵 ∈ dom (𝐹 ∩ I ))
30 simp2 1062 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ dom (𝐹 ∩ I ))
3173ad2ant1 1082 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
3230, 31sstrd 3613 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ 𝒫 𝐵)
33 simp3 1063 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ≠ ∅)
34 intssuni2 4502 . . . . . . . . . . . 12 ((𝑧 ⊆ 𝒫 𝐵𝑧 ≠ ∅) → 𝑧 𝒫 𝐵)
3532, 33, 34syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 𝒫 𝐵)
36 unipw 4918 . . . . . . . . . . 11 𝒫 𝐵 = 𝐵
3735, 36syl6sseq 3651 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧𝐵)
38 intex 4820 . . . . . . . . . . . 12 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
39 elpwg 4166 . . . . . . . . . . . 12 ( 𝑧 ∈ V → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
4038, 39sylbi 207 . . . . . . . . . . 11 (𝑧 ≠ ∅ → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
41403ad2ant3 1084 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ( 𝑧 ∈ 𝒫 𝐵 𝑧𝐵))
4237, 41mpbird 247 . . . . . . . . 9 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ∈ 𝒫 𝐵)
4342adantr 481 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑧 ∈ 𝒫 𝐵)
44 ismrcd.m . . . . . . . . . . . 12 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
45443expib 1268 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4645alrimiv 1855 . . . . . . . . . 10 (𝜑 → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
47463ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4847adantr 481 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → ∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
4932sselda 3603 . . . . . . . . . 10 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥 ∈ 𝒫 𝐵)
5049elpwid 4170 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥𝐵)
51 intss1 4492 . . . . . . . . . 10 (𝑥𝑧 𝑧𝑥)
5251adantl 482 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑧𝑥)
5350, 52jca 554 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝑥𝐵 𝑧𝑥))
54 sseq1 3626 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦𝑥 𝑧𝑥))
5554anbi2d 740 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑥𝐵𝑦𝑥) ↔ (𝑥𝐵 𝑧𝑥)))
56 fveq2 6191 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹 𝑧))
5756sseq1d 3632 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐹𝑦) ⊆ (𝐹𝑥) ↔ (𝐹 𝑧) ⊆ (𝐹𝑥)))
5855, 57imbi12d 334 . . . . . . . . 9 (𝑦 = 𝑧 → (((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) ↔ ((𝑥𝐵 𝑧𝑥) → (𝐹 𝑧) ⊆ (𝐹𝑥))))
5958spcgv 3293 . . . . . . . 8 ( 𝑧 ∈ 𝒫 𝐵 → (∀𝑦((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) → ((𝑥𝐵 𝑧𝑥) → (𝐹 𝑧) ⊆ (𝐹𝑥))))
6043, 48, 53, 59syl3c 66 . . . . . . 7 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹 𝑧) ⊆ (𝐹𝑥))
6130sselda 3603 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝑥 ∈ dom (𝐹 ∩ I ))
62263ad2ant1 1082 . . . . . . . . . 10 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝐹 Fn 𝒫 𝐵)
6362adantr 481 . . . . . . . . 9 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → 𝐹 Fn 𝒫 𝐵)
64 fnelfp 6441 . . . . . . . . 9 ((𝐹 Fn 𝒫 𝐵𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
6563, 49, 64syl2anc 693 . . . . . . . 8 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
6661, 65mpbid 222 . . . . . . 7 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹𝑥) = 𝑥)
6760, 66sseqtrd 3641 . . . . . 6 (((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) ∧ 𝑥𝑧) → (𝐹 𝑧) ⊆ 𝑥)
6867ralrimiva 2966 . . . . 5 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑥𝑧 (𝐹 𝑧) ⊆ 𝑥)
69 ssint 4493 . . . . 5 ((𝐹 𝑧) ⊆ 𝑧 ↔ ∀𝑥𝑧 (𝐹 𝑧) ⊆ 𝑥)
7068, 69sylibr 224 . . . 4 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → (𝐹 𝑧) ⊆ 𝑧)
71183ad2ant1 1082 . . . . 5 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥))
72 id 22 . . . . . . 7 (𝑥 = 𝑧𝑥 = 𝑧)
73 fveq2 6191 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹 𝑧))
7472, 73sseq12d 3634 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝑧 ⊆ (𝐹 𝑧)))
7574rspcva 3307 . . . . 5 (( 𝑧 ∈ 𝒫 𝐵 ∧ ∀𝑥 ∈ 𝒫 𝐵𝑥 ⊆ (𝐹𝑥)) → 𝑧 ⊆ (𝐹 𝑧))
7642, 71, 75syl2anc 693 . . . 4 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ⊆ (𝐹 𝑧))
7770, 76eqssd 3620 . . 3 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → (𝐹 𝑧) = 𝑧)
78 fnelfp 6441 . . . 4 ((𝐹 Fn 𝒫 𝐵 𝑧 ∈ 𝒫 𝐵) → ( 𝑧 ∈ dom (𝐹 ∩ I ) ↔ (𝐹 𝑧) = 𝑧))
7962, 42, 78syl2anc 693 . . 3 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → ( 𝑧 ∈ dom (𝐹 ∩ I ) ↔ (𝐹 𝑧) = 𝑧))
8077, 79mpbird 247 . 2 ((𝜑𝑧 ⊆ dom (𝐹 ∩ I ) ∧ 𝑧 ≠ ∅) → 𝑧 ∈ dom (𝐹 ∩ I ))
817, 29, 80ismred 16262 1 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436   cint 4475   I cid 5023  dom cdm 5114   Fn wfn 5883  wf 5884  cfv 5888  Moorecmre 16242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246
This theorem is referenced by:  ismrcd2  37262  istopclsd  37263  ismrc  37264
  Copyright terms: Public domain W3C validator