![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismri | Structured version Visualization version GIF version |
Description: Criterion for a set to be an independent set of a Moore system. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ismri.1 | ⊢ 𝑁 = (mrCls‘𝐴) |
ismri.2 | ⊢ 𝐼 = (mrInd‘𝐴) |
Ref | Expression |
---|---|
ismri | ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismri.1 | . . . . 5 ⊢ 𝑁 = (mrCls‘𝐴) | |
2 | ismri.2 | . . . . 5 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | 1, 2 | mrisval 16290 | . . . 4 ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))}) |
4 | 3 | eleq2d 2687 | . . 3 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ 𝑆 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})) |
5 | difeq1 3721 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (𝑠 ∖ {𝑥}) = (𝑆 ∖ {𝑥})) | |
6 | 5 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑁‘(𝑠 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥}))) |
7 | 6 | eleq2d 2687 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
8 | 7 | notbid 308 | . . . . 5 ⊢ (𝑠 = 𝑆 → (¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
9 | 8 | raleqbi1dv 3146 | . . . 4 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
10 | 9 | elrab 3363 | . . 3 ⊢ (𝑆 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
11 | 4, 10 | syl6bb 276 | . 2 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
12 | elfvex 6221 | . . . 4 ⊢ (𝐴 ∈ (Moore‘𝑋) → 𝑋 ∈ V) | |
13 | elpw2g 4827 | . . . 4 ⊢ (𝑋 ∈ V → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
15 | 14 | anbi1d 741 | . 2 ⊢ (𝐴 ∈ (Moore‘𝑋) → ((𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
16 | 11, 15 | bitrd 268 | 1 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐼 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 ‘cfv 5888 Moorecmre 16242 mrClscmrc 16243 mrIndcmri 16244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-mre 16246 df-mri 16248 |
This theorem is referenced by: ismri2 16292 mriss 16295 lbsacsbs 19156 |
Copyright terms: Public domain | W3C validator |