MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri Structured version   Visualization version   GIF version

Theorem ismri 16291
Description: Criterion for a set to be an independent set of a Moore system. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri.1 𝑁 = (mrCls‘𝐴)
ismri.2 𝐼 = (mrInd‘𝐴)
Assertion
Ref Expression
ismri (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆
Allowed substitution hints:   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem ismri
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ismri.1 . . . . 5 𝑁 = (mrCls‘𝐴)
2 ismri.2 . . . . 5 𝐼 = (mrInd‘𝐴)
31, 2mrisval 16290 . . . 4 (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
43eleq2d 2687 . . 3 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼𝑆 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))}))
5 difeq1 3721 . . . . . . . 8 (𝑠 = 𝑆 → (𝑠 ∖ {𝑥}) = (𝑆 ∖ {𝑥}))
65fveq2d 6195 . . . . . . 7 (𝑠 = 𝑆 → (𝑁‘(𝑠 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥})))
76eleq2d 2687 . . . . . 6 (𝑠 = 𝑆 → (𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
87notbid 308 . . . . 5 (𝑠 = 𝑆 → (¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
98raleqbi1dv 3146 . . . 4 (𝑠 = 𝑆 → (∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
109elrab 3363 . . 3 (𝑆 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
114, 10syl6bb 276 . 2 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
12 elfvex 6221 . . . 4 (𝐴 ∈ (Moore‘𝑋) → 𝑋 ∈ V)
13 elpw2g 4827 . . . 4 (𝑋 ∈ V → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1412, 13syl 17 . . 3 (𝐴 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1514anbi1d 741 . 2 (𝐴 ∈ (Moore‘𝑋) → ((𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
1611, 15bitrd 268 1 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  𝒫 cpw 4158  {csn 4177  cfv 5888  Moorecmre 16242  mrClscmrc 16243  mrIndcmri 16244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-mre 16246  df-mri 16248
This theorem is referenced by:  ismri2  16292  mriss  16295  lbsacsbs  19156
  Copyright terms: Public domain W3C validator