MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri Structured version   Visualization version   Unicode version

Theorem ismri 16291
Description: Criterion for a set to be an independent set of a Moore system. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri.1  |-  N  =  (mrCls `  A )
ismri.2  |-  I  =  (mrInd `  A )
Assertion
Ref Expression
ismri  |-  ( A  e.  (Moore `  X
)  ->  ( S  e.  I  <->  ( S  C_  X  /\  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x }
) ) ) ) )
Distinct variable groups:    x, A    x, S
Allowed substitution hints:    I( x)    N( x)    X( x)

Proof of Theorem ismri
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 ismri.1 . . . . 5  |-  N  =  (mrCls `  A )
2 ismri.2 . . . . 5  |-  I  =  (mrInd `  A )
31, 2mrisval 16290 . . . 4  |-  ( A  e.  (Moore `  X
)  ->  I  =  { s  e.  ~P X  |  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) } )
43eleq2d 2687 . . 3  |-  ( A  e.  (Moore `  X
)  ->  ( S  e.  I  <->  S  e.  { s  e.  ~P X  |  A. x  e.  s  -.  x  e.  ( N `  ( s  \  { x } ) ) } ) )
5 difeq1 3721 . . . . . . . 8  |-  ( s  =  S  ->  (
s  \  { x } )  =  ( S  \  { x } ) )
65fveq2d 6195 . . . . . . 7  |-  ( s  =  S  ->  ( N `  ( s  \  { x } ) )  =  ( N `
 ( S  \  { x } ) ) )
76eleq2d 2687 . . . . . 6  |-  ( s  =  S  ->  (
x  e.  ( N `
 ( s  \  { x } ) )  <->  x  e.  ( N `  ( S  \  { x } ) ) ) )
87notbid 308 . . . . 5  |-  ( s  =  S  ->  ( -.  x  e.  ( N `  ( s  \  { x } ) )  <->  -.  x  e.  ( N `  ( S 
\  { x }
) ) ) )
98raleqbi1dv 3146 . . . 4  |-  ( s  =  S  ->  ( A. x  e.  s  -.  x  e.  ( N `  ( s  \  { x } ) )  <->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x } ) ) ) )
109elrab 3363 . . 3  |-  ( S  e.  { s  e. 
~P X  |  A. x  e.  s  -.  x  e.  ( N `  ( s  \  {
x } ) ) }  <->  ( S  e. 
~P X  /\  A. x  e.  S  -.  x  e.  ( N `  ( S  \  {
x } ) ) ) )
114, 10syl6bb 276 . 2  |-  ( A  e.  (Moore `  X
)  ->  ( S  e.  I  <->  ( S  e. 
~P X  /\  A. x  e.  S  -.  x  e.  ( N `  ( S  \  {
x } ) ) ) ) )
12 elfvex 6221 . . . 4  |-  ( A  e.  (Moore `  X
)  ->  X  e.  _V )
13 elpw2g 4827 . . . 4  |-  ( X  e.  _V  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
1412, 13syl 17 . . 3  |-  ( A  e.  (Moore `  X
)  ->  ( S  e.  ~P X  <->  S  C_  X
) )
1514anbi1d 741 . 2  |-  ( A  e.  (Moore `  X
)  ->  ( ( S  e.  ~P X  /\  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x } ) ) )  <->  ( S  C_  X  /\  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x }
) ) ) ) )
1611, 15bitrd 268 1  |-  ( A  e.  (Moore `  X
)  ->  ( S  e.  I  <->  ( S  C_  X  /\  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x }
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ~Pcpw 4158   {csn 4177   ` cfv 5888  Moorecmre 16242  mrClscmrc 16243  mrIndcmri 16244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-mre 16246  df-mri 16248
This theorem is referenced by:  ismri2  16292  mriss  16295  lbsacsbs  19156
  Copyright terms: Public domain W3C validator