Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispisys2 Structured version   Visualization version   GIF version

Theorem ispisys2 30216
Description: The property of being a pi-system, expanded version. Pi-systems are closed under finite intersections. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
ispisys2 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
Distinct variable groups:   𝑂,𝑠,𝑥   𝑆,𝑠,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑠)

Proof of Theorem ispisys2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ispisys.p . . 3 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
21ispisys 30215 . 2 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆))
3 dfss3 3592 . . . 4 ((fi‘𝑆) ⊆ 𝑆 ↔ ∀𝑦 ∈ (fi‘𝑆)𝑦𝑆)
4 elex 3212 . . . . . . 7 (𝑆 ∈ 𝒫 𝒫 𝑂𝑆 ∈ V)
54adantr 481 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑆 ∈ V)
6 simpr 477 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}))
7 eldifsn 4317 . . . . . . . . . 10 (𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) ↔ (𝑥 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑥 ≠ ∅))
86, 7sylib 208 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → (𝑥 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑥 ≠ ∅))
98simpld 475 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ (𝒫 𝑆 ∩ Fin))
109elin1d 3802 . . . . . . 7 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ 𝒫 𝑆)
1110elpwid 4170 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥𝑆)
128simprd 479 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ≠ ∅)
139elin2d 3803 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ Fin)
14 elfir 8321 . . . . . 6 ((𝑆 ∈ V ∧ (𝑥𝑆𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin)) → 𝑥 ∈ (fi‘𝑆))
155, 11, 12, 13, 14syl13anc 1328 . . . . 5 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ (fi‘𝑆))
16 elfi2 8320 . . . . . 6 (𝑆 ∈ 𝒫 𝒫 𝑂 → (𝑦 ∈ (fi‘𝑆) ↔ ∃𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})𝑦 = 𝑥))
1716biimpa 501 . . . . 5 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑦 ∈ (fi‘𝑆)) → ∃𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})𝑦 = 𝑥)
18 simpr 477 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑦 = 𝑥) → 𝑦 = 𝑥)
1918eleq1d 2686 . . . . 5 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑦 = 𝑥) → (𝑦𝑆 𝑥𝑆))
2015, 17, 19ralxfrd 4879 . . . 4 (𝑆 ∈ 𝒫 𝒫 𝑂 → (∀𝑦 ∈ (fi‘𝑆)𝑦𝑆 ↔ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
213, 20syl5bb 272 . . 3 (𝑆 ∈ 𝒫 𝒫 𝑂 → ((fi‘𝑆) ⊆ 𝑆 ↔ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
2221pm5.32i 669 . 2 ((𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆) ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
232, 22bitri 264 1 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   cint 4475  cfv 5888  Fincfn 7955  ficfi 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-fi 8317
This theorem is referenced by:  inelpisys  30217  sigapisys  30218  dynkin  30230
  Copyright terms: Public domain W3C validator