Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispisys2 Structured version   Visualization version   Unicode version

Theorem ispisys2 30216
Description: The property of being a pi-system, expanded version. Pi-systems are closed under finite intersections. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
ispisys.p  |-  P  =  { s  e.  ~P ~P O  |  ( fi `  s )  C_  s }
Assertion
Ref Expression
ispisys2  |-  ( S  e.  P  <->  ( S  e.  ~P ~P O  /\  A. x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } )
|^| x  e.  S
) )
Distinct variable groups:    O, s, x    S, s, x
Allowed substitution hints:    P( x, s)

Proof of Theorem ispisys2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ispisys.p . . 3  |-  P  =  { s  e.  ~P ~P O  |  ( fi `  s )  C_  s }
21ispisys 30215 . 2  |-  ( S  e.  P  <->  ( S  e.  ~P ~P O  /\  ( fi `  S ) 
C_  S ) )
3 dfss3 3592 . . . 4  |-  ( ( fi `  S ) 
C_  S  <->  A. y  e.  ( fi `  S
) y  e.  S
)
4 elex 3212 . . . . . . 7  |-  ( S  e.  ~P ~P O  ->  S  e.  _V )
54adantr 481 . . . . . 6  |-  ( ( S  e.  ~P ~P O  /\  x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } ) )  ->  S  e.  _V )
6 simpr 477 . . . . . . . . . 10  |-  ( ( S  e.  ~P ~P O  /\  x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } ) )  ->  x  e.  ( ( ~P S  i^i  Fin )  \  { (/)
} ) )
7 eldifsn 4317 . . . . . . . . . 10  |-  ( x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } )  <->  ( x  e.  ( ~P S  i^i  Fin )  /\  x  =/=  (/) ) )
86, 7sylib 208 . . . . . . . . 9  |-  ( ( S  e.  ~P ~P O  /\  x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } ) )  ->  (
x  e.  ( ~P S  i^i  Fin )  /\  x  =/=  (/) ) )
98simpld 475 . . . . . . . 8  |-  ( ( S  e.  ~P ~P O  /\  x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } ) )  ->  x  e.  ( ~P S  i^i  Fin ) )
109elin1d 3802 . . . . . . 7  |-  ( ( S  e.  ~P ~P O  /\  x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } ) )  ->  x  e.  ~P S )
1110elpwid 4170 . . . . . 6  |-  ( ( S  e.  ~P ~P O  /\  x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } ) )  ->  x  C_  S )
128simprd 479 . . . . . 6  |-  ( ( S  e.  ~P ~P O  /\  x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } ) )  ->  x  =/=  (/) )
139elin2d 3803 . . . . . 6  |-  ( ( S  e.  ~P ~P O  /\  x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } ) )  ->  x  e.  Fin )
14 elfir 8321 . . . . . 6  |-  ( ( S  e.  _V  /\  ( x  C_  S  /\  x  =/=  (/)  /\  x  e. 
Fin ) )  ->  |^| x  e.  ( fi `  S ) )
155, 11, 12, 13, 14syl13anc 1328 . . . . 5  |-  ( ( S  e.  ~P ~P O  /\  x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } ) )  ->  |^| x  e.  ( fi `  S
) )
16 elfi2 8320 . . . . . 6  |-  ( S  e.  ~P ~P O  ->  ( y  e.  ( fi `  S )  <->  E. x  e.  (
( ~P S  i^i  Fin )  \  { (/) } ) y  =  |^| x ) )
1716biimpa 501 . . . . 5  |-  ( ( S  e.  ~P ~P O  /\  y  e.  ( fi `  S ) )  ->  E. x  e.  ( ( ~P S  i^i  Fin )  \  { (/)
} ) y  = 
|^| x )
18 simpr 477 . . . . . 6  |-  ( ( S  e.  ~P ~P O  /\  y  =  |^| x )  ->  y  =  |^| x )
1918eleq1d 2686 . . . . 5  |-  ( ( S  e.  ~P ~P O  /\  y  =  |^| x )  ->  (
y  e.  S  <->  |^| x  e.  S ) )
2015, 17, 19ralxfrd 4879 . . . 4  |-  ( S  e.  ~P ~P O  ->  ( A. y  e.  ( fi `  S
) y  e.  S  <->  A. x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } )
|^| x  e.  S
) )
213, 20syl5bb 272 . . 3  |-  ( S  e.  ~P ~P O  ->  ( ( fi `  S )  C_  S  <->  A. x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } )
|^| x  e.  S
) )
2221pm5.32i 669 . 2  |-  ( ( S  e.  ~P ~P O  /\  ( fi `  S )  C_  S
)  <->  ( S  e. 
~P ~P O  /\  A. x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } )
|^| x  e.  S
) )
232, 22bitri 264 1  |-  ( S  e.  P  <->  ( S  e.  ~P ~P O  /\  A. x  e.  ( ( ~P S  i^i  Fin )  \  { (/) } )
|^| x  e.  S
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   |^|cint 4475   ` cfv 5888   Fincfn 7955   ficfi 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-fi 8317
This theorem is referenced by:  inelpisys  30217  sigapisys  30218  dynkin  30230
  Copyright terms: Public domain W3C validator