MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isps Structured version   Visualization version   GIF version

Theorem isps 17202
Description: The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.)
Assertion
Ref Expression
isps (𝑅𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))

Proof of Theorem isps
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 releq 5201 . . 3 (𝑟 = 𝑅 → (Rel 𝑟 ↔ Rel 𝑅))
2 coeq1 5279 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑟))
3 coeq2 5280 . . . . 5 (𝑟 = 𝑅 → (𝑅𝑟) = (𝑅𝑅))
42, 3eqtrd 2656 . . . 4 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
5 id 22 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
64, 5sseq12d 3634 . . 3 (𝑟 = 𝑅 → ((𝑟𝑟) ⊆ 𝑟 ↔ (𝑅𝑅) ⊆ 𝑅))
7 cnveq 5296 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
85, 7ineq12d 3815 . . . 4 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
9 unieq 4444 . . . . . 6 (𝑟 = 𝑅 𝑟 = 𝑅)
109unieqd 4446 . . . . 5 (𝑟 = 𝑅 𝑟 = 𝑅)
1110reseq2d 5396 . . . 4 (𝑟 = 𝑅 → ( I ↾ 𝑟) = ( I ↾ 𝑅))
128, 11eqeq12d 2637 . . 3 (𝑟 = 𝑅 → ((𝑟𝑟) = ( I ↾ 𝑟) ↔ (𝑅𝑅) = ( I ↾ 𝑅)))
131, 6, 123anbi123d 1399 . 2 (𝑟 = 𝑅 → ((Rel 𝑟 ∧ (𝑟𝑟) ⊆ 𝑟 ∧ (𝑟𝑟) = ( I ↾ 𝑟)) ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
14 df-ps 17200 . 2 PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟𝑟) ⊆ 𝑟 ∧ (𝑟𝑟) = ( I ↾ 𝑟))}
1513, 14elab2g 3353 1 (𝑅𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  cin 3573  wss 3574   cuni 4436   I cid 5023  ccnv 5113  cres 5116  ccom 5118  Rel wrel 5119  PosetRelcps 17198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-res 5126  df-ps 17200
This theorem is referenced by:  psrel  17203  psref2  17204  pstr2  17205  cnvps  17212  psss  17214  letsr  17227
  Copyright terms: Public domain W3C validator