MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letsr Structured version   Visualization version   GIF version

Theorem letsr 17227
Description: The "less than or equal to" relationship on the extended reals is a toset. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
letsr ≤ ∈ TosetRel

Proof of Theorem letsr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lerel 10102 . . 3 Rel ≤
2 lerelxr 10101 . . . . . . . . . . 11 ≤ ⊆ (ℝ* × ℝ*)
32brel 5168 . . . . . . . . . 10 (𝑥𝑦 → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
43adantr 481 . . . . . . . . 9 ((𝑥𝑦𝑦𝑧) → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*))
54simpld 475 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑥 ∈ ℝ*)
64simprd 479 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑦 ∈ ℝ*)
72brel 5168 . . . . . . . . . 10 (𝑦𝑧 → (𝑦 ∈ ℝ*𝑧 ∈ ℝ*))
87simprd 479 . . . . . . . . 9 (𝑦𝑧𝑧 ∈ ℝ*)
98adantl 482 . . . . . . . 8 ((𝑥𝑦𝑦𝑧) → 𝑧 ∈ ℝ*)
105, 6, 93jca 1242 . . . . . . 7 ((𝑥𝑦𝑦𝑧) → (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*))
11 xrletr 11989 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1210, 11mpcom 38 . . . . . 6 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
1312ax-gen 1722 . . . . 5 𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
1413gen2 1723 . . . 4 𝑥𝑦𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
15 cotr 5508 . . . 4 (( ≤ ∘ ≤ ) ⊆ ≤ ↔ ∀𝑥𝑦𝑧((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1614, 15mpbir 221 . . 3 ( ≤ ∘ ≤ ) ⊆ ≤
17 asymref 5512 . . . 4 (( ≤ ∩ ≤ ) = ( I ↾ ≤ ) ↔ ∀𝑥 ≤ ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
18 simpr 477 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → (𝑥𝑦𝑦𝑥))
192brel 5168 . . . . . . . . . . . 12 (𝑦𝑥 → (𝑦 ∈ ℝ*𝑥 ∈ ℝ*))
2019simpld 475 . . . . . . . . . . 11 (𝑦𝑥𝑦 ∈ ℝ*)
2120adantl 482 . . . . . . . . . 10 ((𝑥𝑦𝑦𝑥) → 𝑦 ∈ ℝ*)
22 xrletri3 11985 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2321, 22sylan2 491 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2418, 23mpbird 247 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ (𝑥𝑦𝑦𝑥)) → 𝑥 = 𝑦)
2524ex 450 . . . . . . 7 (𝑥 ∈ ℝ* → ((𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
26 xrleid 11983 . . . . . . . . 9 (𝑥 ∈ ℝ*𝑥𝑥)
2726, 26jca 554 . . . . . . . 8 (𝑥 ∈ ℝ* → (𝑥𝑥𝑥𝑥))
28 breq2 4657 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
29 breq1 4656 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑥))
3028, 29anbi12d 747 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝑥𝑥𝑥) ↔ (𝑥𝑦𝑦𝑥)))
3127, 30syl5ibcom 235 . . . . . . 7 (𝑥 ∈ ℝ* → (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥)))
3225, 31impbid 202 . . . . . 6 (𝑥 ∈ ℝ* → ((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
3332alrimiv 1855 . . . . 5 (𝑥 ∈ ℝ* → ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
34 lefld 17226 . . . . . 6 * =
3534eqcomi 2631 . . . . 5 ≤ = ℝ*
3633, 35eleq2s 2719 . . . 4 (𝑥 ≤ → ∀𝑦((𝑥𝑦𝑦𝑥) ↔ 𝑥 = 𝑦))
3717, 36mprgbir 2927 . . 3 ( ≤ ∩ ≤ ) = ( I ↾ ≤ )
38 xrex 11829 . . . . . 6 * ∈ V
3938, 38xpex 6962 . . . . 5 (ℝ* × ℝ*) ∈ V
4039, 2ssexi 4803 . . . 4 ≤ ∈ V
41 isps 17202 . . . 4 ( ≤ ∈ V → ( ≤ ∈ PosetRel ↔ (Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ≤ ) = ( I ↾ ≤ ))))
4240, 41ax-mp 5 . . 3 ( ≤ ∈ PosetRel ↔ (Rel ≤ ∧ ( ≤ ∘ ≤ ) ⊆ ≤ ∧ ( ≤ ∩ ≤ ) = ( I ↾ ≤ )))
431, 16, 37, 42mpbir3an 1244 . 2 ≤ ∈ PosetRel
44 xrletri 11984 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑦𝑥))
4544rgen2a 2977 . . 3 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦𝑦𝑥)
46 qfto 5517 . . 3 ((ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ ) ↔ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦𝑦𝑥))
4745, 46mpbir 221 . 2 (ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ )
48 ledm 17224 . . 3 * = dom ≤
4948istsr 17217 . 2 ( ≤ ∈ TosetRel ↔ ( ≤ ∈ PosetRel ∧ (ℝ* × ℝ*) ⊆ ( ≤ ∪ ≤ )))
5043, 47, 49mpbir2an 955 1 ≤ ∈ TosetRel
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cun 3572  cin 3573  wss 3574   cuni 4436   class class class wbr 4653   I cid 5023   × cxp 5112  ccnv 5113  cres 5116  ccom 5118  Rel wrel 5119  *cxr 10073  cle 10075  PosetRelcps 17198   TosetRel ctsr 17199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ps 17200  df-tsr 17201
This theorem is referenced by:  cnfldle  19755  cnfldfun  19758  cnfldfunALT  19759  letopon  21009  leordtval2  21016  leordtval  21017  iccordt  21018  ordtrestixx  21026  xrge0tsms  22637  icopnfhmeo  22742  iccpnfhmeo  22744  xrhmeo  22745  xrhaus  29535  xrge0tsmsd  29785  cnvordtrestixx  29959  xrmulc1cn  29976  xrge0iifhmeo  29982  poimir  33442
  Copyright terms: Public domain W3C validator