Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iss2 Structured version   Visualization version   Unicode version

Theorem iss2 34112
Description: A subclass of the identity relation is the intersection of identity relation with Cartesian product of the domain and range of the class. (Contributed by Peter Mazsa, 22-Jul-2019.)
Assertion
Ref Expression
iss2  |-  ( A 
C_  _I  <->  A  =  (  _I  i^i  ( dom  A  X.  ran  A ) ) )

Proof of Theorem iss2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . . . . . . 9  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  _I  ) )
2 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
3 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
42, 3opeldm 5328 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
51, 4jca2 556 . . . . . . . 8  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  /\  x  e. 
dom  A ) ) )
62, 3opelrn 5357 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  A  ->  y  e. 
ran  A )
71, 6jca2 556 . . . . . . . 8  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  /\  y  e. 
ran  A ) ) )
85, 7jcad 555 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  ( (
<. x ,  y >.  e.  _I  /\  x  e. 
dom  A )  /\  ( <. x ,  y
>.  e.  _I  /\  y  e.  ran  A ) ) ) )
9 anandi 871 . . . . . . 7  |-  ( (
<. x ,  y >.  e.  _I  /\  ( x  e.  dom  A  /\  y  e.  ran  A ) )  <->  ( ( <.
x ,  y >.  e.  _I  /\  x  e. 
dom  A )  /\  ( <. x ,  y
>.  e.  _I  /\  y  e.  ran  A ) ) )
108, 9syl6ibr 242 . . . . . 6  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  /\  ( x  e.  dom  A  /\  y  e.  ran  A ) ) ) )
11 df-br 4654 . . . . . . . . 9  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
123ideq 5274 . . . . . . . . 9  |-  ( x  _I  y  <->  x  =  y )
1311, 12bitr3i 266 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
142eldm2 5322 . . . . . . . . . . . . 13  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
15 opeq2 4403 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  <. x ,  x >.  =  <. x ,  y >. )
1615eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( <. x ,  x >.  e.  A  <->  <. x ,  y
>.  e.  A ) )
1716biimprcd 240 . . . . . . . . . . . . . . . 16  |-  ( <.
x ,  y >.  e.  A  ->  ( x  =  y  ->  <. x ,  x >.  e.  A
) )
1813, 17syl5bi 232 . . . . . . . . . . . . . . 15  |-  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  ->  <. x ,  x >.  e.  A
) )
191, 18sylcom 30 . . . . . . . . . . . . . 14  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  <. x ,  x >.  e.  A
) )
2019exlimdv 1861 . . . . . . . . . . . . 13  |-  ( A 
C_  _I  ->  ( E. y <. x ,  y
>.  e.  A  ->  <. x ,  x >.  e.  A
) )
2114, 20syl5bi 232 . . . . . . . . . . . 12  |-  ( A 
C_  _I  ->  ( x  e.  dom  A  ->  <. x ,  x >.  e.  A ) )
2216imbi2d 330 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  dom  A  ->  <. x ,  x >.  e.  A )  <->  ( x  e.  dom  A  ->  <. x ,  y >.  e.  A
) ) )
2321, 22syl5ibcom 235 . . . . . . . . . . 11  |-  ( A 
C_  _I  ->  ( x  =  y  ->  (
x  e.  dom  A  -> 
<. x ,  y >.  e.  A ) ) )
2423imp 445 . . . . . . . . . 10  |-  ( ( A  C_  _I  /\  x  =  y )  -> 
( x  e.  dom  A  ->  <. x ,  y
>.  e.  A ) )
2524adantrd 484 . . . . . . . . 9  |-  ( ( A  C_  _I  /\  x  =  y )  -> 
( ( x  e. 
dom  A  /\  y  e.  ran  A )  ->  <. x ,  y >.  e.  A ) )
2625ex 450 . . . . . . . 8  |-  ( A 
C_  _I  ->  ( x  =  y  ->  (
( x  e.  dom  A  /\  y  e.  ran  A )  ->  <. x ,  y >.  e.  A
) ) )
2713, 26syl5bi 232 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  _I  ->  ( (
x  e.  dom  A  /\  y  e.  ran  A )  ->  <. x ,  y >.  e.  A
) ) )
2827impd 447 . . . . . 6  |-  ( A 
C_  _I  ->  ( (
<. x ,  y >.  e.  _I  /\  ( x  e.  dom  A  /\  y  e.  ran  A ) )  ->  <. x ,  y >.  e.  A
) )
2910, 28impbid 202 . . . . 5  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  _I  /\  ( x  e.  dom  A  /\  y  e.  ran  A ) ) ) )
30 opelinxp 34111 . . . . . 6  |-  ( <.
x ,  y >.  e.  (  _I  i^i  ( dom  A  X.  ran  A ) )  <->  ( (
x  e.  dom  A  /\  y  e.  ran  A )  /\  <. x ,  y >.  e.  _I  ) )
3130biancom 33994 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  i^i  ( dom  A  X.  ran  A ) )  <->  ( <. x ,  y >.  e.  _I  /\  ( x  e.  dom  A  /\  y  e.  ran  A ) ) )
3229, 31syl6bbr 278 . . . 4  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (  _I  i^i  ( dom  A  X.  ran  A ) ) ) )
3332alrimivv 1856 . . 3  |-  ( A 
C_  _I  ->  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (  _I  i^i  ( dom  A  X.  ran  A ) ) ) )
34 reli 5249 . . . . 5  |-  Rel  _I
35 relss 5206 . . . . 5  |-  ( A 
C_  _I  ->  ( Rel 
_I  ->  Rel  A )
)
3634, 35mpi 20 . . . 4  |-  ( A 
C_  _I  ->  Rel  A
)
37 relinxp 34069 . . . 4  |-  Rel  (  _I  i^i  ( dom  A  X.  ran  A ) )
38 eqrel 5209 . . . 4  |-  ( ( Rel  A  /\  Rel  (  _I  i^i  ( dom  A  X.  ran  A
) ) )  -> 
( A  =  (  _I  i^i  ( dom 
A  X.  ran  A
) )  <->  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (  _I  i^i  ( dom  A  X.  ran  A ) ) ) ) )
3936, 37, 38sylancl 694 . . 3  |-  ( A 
C_  _I  ->  ( A  =  (  _I  i^i  ( dom  A  X.  ran  A ) )  <->  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (  _I  i^i  ( dom  A  X.  ran  A ) ) ) ) )
4033, 39mpbird 247 . 2  |-  ( A 
C_  _I  ->  A  =  (  _I  i^i  ( dom  A  X.  ran  A
) ) )
41 inss1 3833 . . 3  |-  (  _I 
i^i  ( dom  A  X.  ran  A ) ) 
C_  _I
42 sseq1 3626 . . 3  |-  ( A  =  (  _I  i^i  ( dom  A  X.  ran  A ) )  ->  ( A  C_  _I  <->  (  _I  i^i  ( dom  A  X.  ran  A ) )  C_  _I  ) )
4341, 42mpbiri 248 . 2  |-  ( A  =  (  _I  i^i  ( dom  A  X.  ran  A ) )  ->  A  C_  _I  )
4440, 43impbii 199 1  |-  ( A 
C_  _I  <->  A  =  (  _I  i^i  ( dom  A  X.  ran  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    i^i cin 3573    C_ wss 3574   <.cop 4183   class class class wbr 4653    _I cid 5023    X. cxp 5112   dom cdm 5114   ran crn 5115   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator