![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > issh | Structured version Visualization version GIF version |
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
issh | ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 27856 | . . . 4 ⊢ ℋ ∈ V | |
2 | 1 | elpw2 4828 | . . 3 ⊢ (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ) |
3 | 3anass 1042 | . . 3 ⊢ ((0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (0ℎ ∈ 𝐻 ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
4 | 2, 3 | anbi12i 733 | . 2 ⊢ ((𝐻 ∈ 𝒫 ℋ ∧ (0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0ℎ ∈ 𝐻 ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)))) |
5 | eleq2 2690 | . . . 4 ⊢ (ℎ = 𝐻 → (0ℎ ∈ ℎ ↔ 0ℎ ∈ 𝐻)) | |
6 | id 22 | . . . . . . 7 ⊢ (ℎ = 𝐻 → ℎ = 𝐻) | |
7 | 6 | sqxpeqd 5141 | . . . . . 6 ⊢ (ℎ = 𝐻 → (ℎ × ℎ) = (𝐻 × 𝐻)) |
8 | 7 | imaeq2d 5466 | . . . . 5 ⊢ (ℎ = 𝐻 → ( +ℎ “ (ℎ × ℎ)) = ( +ℎ “ (𝐻 × 𝐻))) |
9 | 8, 6 | sseq12d 3634 | . . . 4 ⊢ (ℎ = 𝐻 → (( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ↔ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻)) |
10 | xpeq2 5129 | . . . . . 6 ⊢ (ℎ = 𝐻 → (ℂ × ℎ) = (ℂ × 𝐻)) | |
11 | 10 | imaeq2d 5466 | . . . . 5 ⊢ (ℎ = 𝐻 → ( ·ℎ “ (ℂ × ℎ)) = ( ·ℎ “ (ℂ × 𝐻))) |
12 | 11, 6 | sseq12d 3634 | . . . 4 ⊢ (ℎ = 𝐻 → (( ·ℎ “ (ℂ × ℎ)) ⊆ ℎ ↔ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)) |
13 | 5, 9, 12 | 3anbi123d 1399 | . . 3 ⊢ (ℎ = 𝐻 → ((0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ “ (ℂ × ℎ)) ⊆ ℎ) ↔ (0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) |
14 | df-sh 28064 | . . 3 ⊢ Sℋ = {ℎ ∈ 𝒫 ℋ ∣ (0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ “ (ℂ × ℎ)) ⊆ ℎ)} | |
15 | 13, 14 | elrab2 3366 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ (𝐻 ∈ 𝒫 ℋ ∧ (0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) |
16 | anass 681 | . 2 ⊢ (((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0ℎ ∈ 𝐻 ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)))) | |
17 | 4, 15, 16 | 3bitr4i 292 | 1 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 𝒫 cpw 4158 × cxp 5112 “ cima 5117 ℂcc 9934 ℋchil 27776 +ℎ cva 27777 ·ℎ csm 27778 0ℎc0v 27781 Sℋ csh 27785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-hilex 27856 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-sh 28064 |
This theorem is referenced by: issh2 28066 shss 28067 sh0 28073 |
Copyright terms: Public domain | W3C validator |