![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > sh0 | Structured version Visualization version GIF version |
Description: The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sh0 | ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh 28065 | . . 3 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
2 | 1 | simplbi 476 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻)) |
3 | 2 | simprd 479 | 1 ⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ⊆ wss 3574 × cxp 5112 “ cima 5117 ℂcc 9934 ℋchil 27776 +ℎ cva 27777 ·ℎ csm 27778 0ℎc0v 27781 Sℋ csh 27785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-hilex 27856 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-sh 28064 |
This theorem is referenced by: ch0 28085 hhssabloilem 28118 hhssnv 28121 oc0 28149 ocin 28155 shscli 28176 shsel1 28180 shintcli 28188 shunssi 28227 omlsii 28262 sh0le 28299 imaelshi 28917 shatomistici 29220 |
Copyright terms: Public domain | W3C validator |