![]() |
Metamath
Proof Explorer Theorem List (p. 281 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | normneg 28001 | The norm of a vector equals the norm of its negative. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (normℎ‘(-1 ·ℎ 𝐴)) = (normℎ‘𝐴)) | ||
Theorem | normpyth 28002 | Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) | ||
Theorem | normpyc 28003 | Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (normℎ‘𝐴) ≤ (normℎ‘(𝐴 +ℎ 𝐵)))) | ||
Theorem | norm3difi 28004 | Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) | ||
Theorem | norm3adifii 28005 | Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 30-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) | ||
Theorem | norm3lem 28006 | Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℝ ⇒ ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → (normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷) | ||
Theorem | norm3dif 28007 | Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 20-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵)))) | ||
Theorem | norm3dif2 28008 | Norm of differences around common element. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐶 −ℎ 𝐴)) + (normℎ‘(𝐶 −ℎ 𝐵)))) | ||
Theorem | norm3lemt 28009 | Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) → (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → (normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷)) | ||
Theorem | norm3adifi 28010 | Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 3-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵))) | ||
Theorem | normpari 28011 | Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (((normℎ‘(𝐴 −ℎ 𝐵))↑2) + ((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = ((2 · ((normℎ‘𝐴)↑2)) + (2 · ((normℎ‘𝐵)↑2))) | ||
Theorem | normpar 28012 | Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((normℎ‘(𝐴 −ℎ 𝐵))↑2) + ((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = ((2 · ((normℎ‘𝐴)↑2)) + (2 · ((normℎ‘𝐵)↑2)))) | ||
Theorem | normpar2i 28013 | Corollary of parallelogram law for norms. Part of Lemma 3.6 of [Beran] p. 100. (Contributed by NM, 5-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((normℎ‘(𝐴 −ℎ 𝐵))↑2) = (((2 · ((normℎ‘(𝐴 −ℎ 𝐶))↑2)) + (2 · ((normℎ‘(𝐵 −ℎ 𝐶))↑2))) − ((normℎ‘((𝐴 +ℎ 𝐵) −ℎ (2 ·ℎ 𝐶)))↑2)) | ||
Theorem | polid2i 28014 | Generalized polarization identity. Generalization of Exercise 4(a) of [ReedSimon] p. 63. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ (𝐴 ·ih 𝐵) = (((((𝐴 +ℎ 𝐶) ·ih (𝐷 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐶) ·ih (𝐷 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐶)) ·ih (𝐷 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐶)) ·ih (𝐷 −ℎ (i ·ℎ 𝐵)))))) / 4) | ||
Theorem | polidi 28015 | Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of axiom ax-his3 27941. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) | ||
Theorem | polid 28016 | Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of axiom ax-his3 27941. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4)) | ||
Theorem | hilablo 28017 | Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
⊢ +ℎ ∈ AbelOp | ||
Theorem | hilid 28018 | The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007.) (New usage is discouraged.) |
⊢ (GId‘ +ℎ ) = 0ℎ | ||
Theorem | hilvc 28019 | Hilbert space is a complex vector space. Vector addition is +ℎ, and scalar product is ·ℎ. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD | ||
Theorem | hilnormi 28020 | Hilbert space norm in terms of vector space norm. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ℋ = (BaseSet‘𝑈) & ⊢ ·ih = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
Theorem | hilhhi 28021 | Deduce the structure of Hilbert space from its components. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ ℋ = (BaseSet‘𝑈) & ⊢ +ℎ = ( +𝑣 ‘𝑈) & ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) & ⊢ ·ih = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | ||
Theorem | hhnv 28022 | Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
Theorem | hhva 28023 | The group (addition) operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ +ℎ = ( +𝑣 ‘𝑈) | ||
Theorem | hhba 28024 | The base set of Hilbert space. This theorem provides an independent proof of df-hba 27826 (see comments in that definition). (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ ℋ = (BaseSet‘𝑈) | ||
Theorem | hh0v 28025 | The zero vector of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 0ℎ = (0vec‘𝑈) | ||
Theorem | hhsm 28026 | The scalar product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | ||
Theorem | hhvs 28027 | The vector subtraction operation of Hilbert space. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ −ℎ = ( −𝑣 ‘𝑈) | ||
Theorem | hhnm 28028 | The norm function of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
Theorem | hhims 28029 | The induced metric of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 = (IndMet‘𝑈) | ||
Theorem | hhims2 28030 | Hilbert space distance metric. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 = (normℎ ∘ −ℎ ) | ||
Theorem | hhmet 28031 | The induced metric of Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 ∈ (Met‘ ℋ) | ||
Theorem | hhxmet 28032 | The induced metric of Hilbert space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 ∈ (∞Met‘ ℋ) | ||
Theorem | hhmetdval 28033 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
Theorem | hhip 28034 | The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ ·ih = (·𝑖OLD‘𝑈) | ||
Theorem | hhph 28035 | The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 𝑈 ∈ CPreHilOLD | ||
Theorem | bcsiALT 28036 | Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵)) | ||
Theorem | bcsiHIL 28037 | Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Proved from ZFC version.) (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵)) | ||
Theorem | bcs 28038 | Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵))) | ||
Theorem | bcs2 28039 | Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL 28037. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ (normℎ‘𝐵)) | ||
Theorem | bcs3 28040 | Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL 28037. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐵) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ (normℎ‘𝐴)) | ||
Theorem | hcau 28041* | Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) | ||
Theorem | hcauseq 28042 | A Cauchy sequences on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (𝐹 ∈ Cauchy → 𝐹:ℕ⟶ ℋ) | ||
Theorem | hcaucvg 28043* | A Cauchy sequence on a Hilbert space converges. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ ((𝐹 ∈ Cauchy ∧ 𝐴 ∈ ℝ+) → ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝐴) | ||
Theorem | seq1hcau 28044* | A sequence on a Hilbert space is a Cauchy sequence if it converges. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (𝐹:ℕ⟶ ℋ → (𝐹 ∈ Cauchy ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) | ||
Theorem | hlimi 28045* | Express the predicate: The limit of vector sequence 𝐹 in a Hilbert space is 𝐴, i.e. 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑦 such that the norm of any later vector in the sequence minus the limit is less than 𝑥. Definition of converge in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 ⇝𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) | ||
Theorem | hlimseqi 28046 | A sequence with a limit on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹:ℕ⟶ ℋ) | ||
Theorem | hlimveci 28047 | Closure of the limit of a sequence on Hilbert space. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐴 ∈ ℋ) | ||
Theorem | hlimconvi 28048* | Convergence of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐹 ⇝𝑣 𝐴 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝐵) | ||
Theorem | hlim2 28049* | The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝐹 ⇝𝑣 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) | ||
Theorem | hlimadd 28050* | Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) & ⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) & ⊢ (𝜑 → 𝐹 ⇝𝑣 𝐴) & ⊢ (𝜑 → 𝐺 ⇝𝑣 𝐵) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛) +ℎ (𝐺‘𝑛))) ⇒ ⊢ (𝜑 → 𝐻 ⇝𝑣 (𝐴 +ℎ 𝐵)) | ||
Theorem | hilmet 28051 | The Hilbert space norm determines a metric space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 ∈ (Met‘ ℋ) | ||
Theorem | hilxmet 28052 | The Hilbert space norm determines a metric space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 ∈ (∞Met‘ ℋ) | ||
Theorem | hilmetdval 28053 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
Theorem | hilims 28054 | Hilbert space distance metric. (Contributed by NM, 13-Sep-2007.) (New usage is discouraged.) |
⊢ ℋ = (BaseSet‘𝑈) & ⊢ +ℎ = ( +𝑣 ‘𝑈) & ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) & ⊢ ·ih = (·𝑖OLD‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ 𝐷 = (normℎ ∘ −ℎ ) | ||
Theorem | hhcau 28055 | The Cauchy sequences of Hilbert space. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) | ||
Theorem | hhlm 28056 | The limit sequences of Hilbert space. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑𝑚 ℕ)) | ||
Theorem | hhcmpl 28057* | Lemma used for derivation of the completeness axiom ax-hcompl 28059 from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
Theorem | hilcompl 28058* | Lemma used for derivation of the completeness axiom ax-hcompl 28059 from ZFC Hilbert space theory. The first five hypotheses would be satisfied by the definitions described in ax-hilex 27856; the 6th would be satisfied by eqid 2622; the 7th by a given fixed Hilbert space; and the last by theorem hlcompl 27771. (Contributed by NM, 13-Sep-2007.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ ℋ = (BaseSet‘𝑈) & ⊢ +ℎ = ( +𝑣 ‘𝑈) & ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) & ⊢ ·ih = (·𝑖OLD‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑈 ∈ CHilOLD & ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
Axiom | ax-hcompl 28059* | Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
Theorem | hhcms 28060 | The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ 𝐷 ∈ (CMet‘ ℋ) | ||
Theorem | hhhl 28061 | The Hilbert space structure is a complex Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ⇒ ⊢ 𝑈 ∈ CHilOLD | ||
Theorem | hilcms 28062 | The Hilbert space norm determines a complete metric space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
⊢ 𝐷 = (normℎ ∘ −ℎ ) ⇒ ⊢ 𝐷 ∈ (CMet‘ ℋ) | ||
Theorem | hilhl 28063 | The Hilbert space of the Hilbert Space Explorer is a complex Hilbert space. (Contributed by Steve Rodriguez, 29-Apr-2007.) (New usage is discouraged.) |
⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ CHilOLD | ||
Definition | df-sh 28064 | Define the set of subspaces of a Hilbert space. See issh 28065 for its membership relation. Basically, a subspace is a subset of a Hilbert space that acts like a vector space. From Definition of [Beran] p. 95. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ Sℋ = {ℎ ∈ 𝒫 ℋ ∣ (0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ “ (ℂ × ℎ)) ⊆ ℎ)} | ||
Theorem | issh 28065 | Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | ||
Theorem | issh2 28066* | Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | ||
Theorem | shss 28067 | A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | ||
Theorem | shel 28068 | A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | ||
Theorem | shex 28069 | The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
⊢ Sℋ ∈ V | ||
Theorem | shssii 28070 | A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Sℋ ⇒ ⊢ 𝐻 ⊆ ℋ | ||
Theorem | sheli 28071 | A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Sℋ ⇒ ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) | ||
Theorem | shelii 28072 | A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Sℋ & ⊢ 𝐴 ∈ 𝐻 ⇒ ⊢ 𝐴 ∈ ℋ | ||
Theorem | sh0 28073 | The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻) | ||
Theorem | shaddcl 28074 | Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) | ||
Theorem | shmulcl 28075 | Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻) | ||
Theorem | issh3 28076* | Subspace 𝐻 of a Hilbert space. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ (𝐻 ⊆ ℋ → (𝐻 ∈ Sℋ ↔ (0ℎ ∈ 𝐻 ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)))) | ||
Theorem | shsubcl 28077 | Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) | ||
Definition | df-ch 28078 | Define the set of closed subspaces of a Hilbert space. A closed subspace is one in which the limit of every convergent sequence in the subspace belongs to the subspace. For its membership relation, see isch 28079. From Definition of [Beran] p. 107. Alternate definitions are given by isch2 28080 and isch3 28098. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.) |
⊢ Cℋ = {ℎ ∈ Sℋ ∣ ( ⇝𝑣 “ (ℎ ↑𝑚 ℕ)) ⊆ ℎ} | ||
Theorem | isch 28079 | Closed subspace 𝐻 of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑𝑚 ℕ)) ⊆ 𝐻)) | ||
Theorem | isch2 28080* | Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) | ||
Theorem | chsh 28081 | A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | ||
Theorem | chsssh 28082 | Closed subspaces are subspaces in a Hilbert space. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ Cℋ ⊆ Sℋ | ||
Theorem | chex 28083 | The set of closed subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
⊢ Cℋ ∈ V | ||
Theorem | chshii 28084 | A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ 𝐻 ∈ Sℋ | ||
Theorem | ch0 28085 | The zero vector belongs to any closed subspace of a Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → 0ℎ ∈ 𝐻) | ||
Theorem | chss 28086 | A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ) | ||
Theorem | chel 28087 | A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) | ||
Theorem | chssii 28088 | A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ 𝐻 ⊆ ℋ | ||
Theorem | cheli 28089 | A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ ⇒ ⊢ (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ) | ||
Theorem | chelii 28090 | A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐻 ∈ Cℋ & ⊢ 𝐴 ∈ 𝐻 ⇒ ⊢ 𝐴 ∈ ℋ | ||
Theorem | chlimi 28091 | The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐻 ∈ Cℋ ∧ 𝐹:ℕ⟶𝐻 ∧ 𝐹 ⇝𝑣 𝐴) → 𝐴 ∈ 𝐻) | ||
Theorem | hlim0 28092 | The zero sequence in Hilbert space converges to the zero vector. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ | ||
Theorem | hlimcaui 28093 | If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ Cauchy) | ||
Theorem | hlimf 28094 | Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ | ||
Theorem | hlimuni 28095 | A Hilbert space sequence converges to at most one limit. (Contributed by NM, 19-Aug-1999.) (Revised by Mario Carneiro, 2-May-2015.) (New usage is discouraged.) |
⊢ ((𝐹 ⇝𝑣 𝐴 ∧ 𝐹 ⇝𝑣 𝐵) → 𝐴 = 𝐵) | ||
Theorem | hlimreui 28096* | The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (∃𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ↔ ∃!𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥) | ||
Theorem | hlimeui 28097* | The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (∃𝑥 𝐹 ⇝𝑣 𝑥 ↔ ∃!𝑥 𝐹 ⇝𝑣 𝑥) | ||
Theorem | isch3 28098* | A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥))) | ||
Theorem | chcompl 28099* | Completeness of a closed subspace of Hilbert space. (Contributed by NM, 4-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐻 ∈ Cℋ ∧ 𝐹 ∈ Cauchy ∧ 𝐹:ℕ⟶𝐻) → ∃𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥) | ||
Theorem | helch 28100 | The unit Hilbert lattice element (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 6-Sep-1999.) (New usage is discouraged.) |
⊢ ℋ ∈ Cℋ |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |