HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh Structured version   Visualization version   Unicode version

Theorem issh 28065
Description: Subspace  H of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  (
(  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H ) ) )

Proof of Theorem issh
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 27856 . . . 4  |-  ~H  e.  _V
21elpw2 4828 . . 3  |-  ( H  e.  ~P ~H  <->  H  C_  ~H )
3 3anass 1042 . . 3  |-  ( ( 0h  e.  H  /\  (  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H )  <->  ( 0h  e.  H  /\  (
(  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H ) ) )
42, 3anbi12i 733 . 2  |-  ( ( H  e.  ~P ~H  /\  ( 0h  e.  H  /\  (  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H ) )  <->  ( H  C_ 
~H  /\  ( 0h  e.  H  /\  (
(  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H ) ) ) )
5 eleq2 2690 . . . 4  |-  ( h  =  H  ->  ( 0h  e.  h  <->  0h  e.  H ) )
6 id 22 . . . . . . 7  |-  ( h  =  H  ->  h  =  H )
76sqxpeqd 5141 . . . . . 6  |-  ( h  =  H  ->  (
h  X.  h )  =  ( H  X.  H ) )
87imaeq2d 5466 . . . . 5  |-  ( h  =  H  ->  (  +h  " ( h  X.  h ) )  =  (  +h  " ( H  X.  H ) ) )
98, 6sseq12d 3634 . . . 4  |-  ( h  =  H  ->  (
(  +h  " (
h  X.  h ) )  C_  h  <->  (  +h  " ( H  X.  H
) )  C_  H
) )
10 xpeq2 5129 . . . . . 6  |-  ( h  =  H  ->  ( CC  X.  h )  =  ( CC  X.  H
) )
1110imaeq2d 5466 . . . . 5  |-  ( h  =  H  ->  (  .h  " ( CC  X.  h ) )  =  (  .h  " ( CC  X.  H ) ) )
1211, 6sseq12d 3634 . . . 4  |-  ( h  =  H  ->  (
(  .h  " ( CC  X.  h ) ) 
C_  h  <->  (  .h  " ( CC  X.  H
) )  C_  H
) )
135, 9, 123anbi123d 1399 . . 3  |-  ( h  =  H  ->  (
( 0h  e.  h  /\  (  +h  " (
h  X.  h ) )  C_  h  /\  (  .h  " ( CC  X.  h ) ) 
C_  h )  <->  ( 0h  e.  H  /\  (  +h  " ( H  X.  H ) )  C_  H  /\  (  .h  "
( CC  X.  H
) )  C_  H
) ) )
14 df-sh 28064 . . 3  |-  SH  =  { h  e.  ~P ~H  |  ( 0h  e.  h  /\  (  +h  " ( h  X.  h ) )  C_  h  /\  (  .h  "
( CC  X.  h
) )  C_  h
) }
1513, 14elrab2 3366 . 2  |-  ( H  e.  SH  <->  ( H  e.  ~P ~H  /\  ( 0h  e.  H  /\  (  +h  " ( H  X.  H ) )  C_  H  /\  (  .h  "
( CC  X.  H
) )  C_  H
) ) )
16 anass 681 . 2  |-  ( ( ( H  C_  ~H  /\ 
0h  e.  H )  /\  ( (  +h  " ( H  X.  H ) )  C_  H  /\  (  .h  "
( CC  X.  H
) )  C_  H
) )  <->  ( H  C_ 
~H  /\  ( 0h  e.  H  /\  (
(  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H ) ) ) )
174, 15, 163bitr4i 292 1  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  (
(  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158    X. cxp 5112   "cima 5117   CCcc 9934   ~Hchil 27776    +h cva 27777    .h csm 27778   0hc0v 27781   SHcsh 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-sh 28064
This theorem is referenced by:  issh2  28066  shss  28067  sh0  28073
  Copyright terms: Public domain W3C validator