| Step | Hyp | Ref
| Expression |
| 1 | | issrg.g |
. . . . . 6
⊢ 𝐺 = (mulGrp‘𝑅) |
| 2 | 1 | eleq1i 2692 |
. . . . 5
⊢ (𝐺 ∈ Mnd ↔
(mulGrp‘𝑅) ∈
Mnd) |
| 3 | 2 | bicomi 214 |
. . . 4
⊢
((mulGrp‘𝑅)
∈ Mnd ↔ 𝐺 ∈
Mnd) |
| 4 | | issrg.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 5 | | fvex 6201 |
. . . . . 6
⊢
(Base‘𝑅)
∈ V |
| 6 | 4, 5 | eqeltri 2697 |
. . . . 5
⊢ 𝐵 ∈ V |
| 7 | | issrg.p |
. . . . . 6
⊢ + =
(+g‘𝑅) |
| 8 | | fvex 6201 |
. . . . . 6
⊢
(+g‘𝑅) ∈ V |
| 9 | 7, 8 | eqeltri 2697 |
. . . . 5
⊢ + ∈
V |
| 10 | | issrg.t |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
| 11 | | fvex 6201 |
. . . . . . . 8
⊢
(.r‘𝑅) ∈ V |
| 12 | 10, 11 | eqeltri 2697 |
. . . . . . 7
⊢ · ∈
V |
| 13 | 12 | a1i 11 |
. . . . . 6
⊢ ((𝑏 = 𝐵 ∧ 𝑝 = + ) → · ∈
V) |
| 14 | | issrg.0 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑅) |
| 15 | | fvex 6201 |
. . . . . . . . 9
⊢
(0g‘𝑅) ∈ V |
| 16 | 14, 15 | eqeltri 2697 |
. . . . . . . 8
⊢ 0 ∈
V |
| 17 | 16 | a1i 11 |
. . . . . . 7
⊢ (((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 0 ∈
V) |
| 18 | | simplll 798 |
. . . . . . . 8
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑏 = 𝐵) |
| 19 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑡 = · ) |
| 20 | | eqidd 2623 |
. . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑥 = 𝑥) |
| 21 | | simpllr 799 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑝 = + ) |
| 22 | 21 | oveqd 6667 |
. . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑝𝑧) = (𝑦 + 𝑧)) |
| 23 | 19, 20, 22 | oveq123d 6671 |
. . . . . . . . . . . . 13
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡(𝑦𝑝𝑧)) = (𝑥 · (𝑦 + 𝑧))) |
| 24 | 19 | oveqd 6667 |
. . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑦) = (𝑥 · 𝑦)) |
| 25 | 19 | oveqd 6667 |
. . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑧) = (𝑥 · 𝑧)) |
| 26 | 21, 24, 25 | oveq123d 6671 |
. . . . . . . . . . . . 13
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 27 | 23, 26 | eqeq12d 2637 |
. . . . . . . . . . . 12
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ↔ (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))) |
| 28 | 21 | oveqd 6667 |
. . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦)) |
| 29 | | eqidd 2623 |
. . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑧 = 𝑧) |
| 30 | 19, 28, 29 | oveq123d 6671 |
. . . . . . . . . . . . 13
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥 + 𝑦) · 𝑧)) |
| 31 | 19 | oveqd 6667 |
. . . . . . . . . . . . . 14
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑡𝑧) = (𝑦 · 𝑧)) |
| 32 | 21, 25, 31 | oveq123d 6671 |
. . . . . . . . . . . . 13
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 33 | 30, 32 | eqeq12d 2637 |
. . . . . . . . . . . 12
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) ↔ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
| 34 | 27, 33 | anbi12d 747 |
. . . . . . . . . . 11
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
| 35 | 18, 34 | raleqbidv 3152 |
. . . . . . . . . 10
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
| 36 | 18, 35 | raleqbidv 3152 |
. . . . . . . . 9
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
| 37 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑛 = 0 ) |
| 38 | 19, 37, 20 | oveq123d 6671 |
. . . . . . . . . . 11
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑛𝑡𝑥) = ( 0 · 𝑥)) |
| 39 | 38, 37 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑛𝑡𝑥) = 𝑛 ↔ ( 0 · 𝑥) = 0 )) |
| 40 | 19, 20, 37 | oveq123d 6671 |
. . . . . . . . . . 11
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑛) = (𝑥 · 0 )) |
| 41 | 40, 37 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑛) = 𝑛 ↔ (𝑥 · 0 ) = 0 )) |
| 42 | 39, 41 | anbi12d 747 |
. . . . . . . . 9
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛) ↔ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) |
| 43 | 36, 42 | anbi12d 747 |
. . . . . . . 8
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
| 44 | 18, 43 | raleqbidv 3152 |
. . . . . . 7
⊢ ((((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
| 45 | 17, 44 | sbcied 3472 |
. . . . . 6
⊢ (((𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ([
0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
| 46 | 13, 45 | sbcied 3472 |
. . . . 5
⊢ ((𝑏 = 𝐵 ∧ 𝑝 = + ) → ([ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
| 47 | 6, 9, 46 | sbc2ie 3505 |
. . . 4
⊢
([𝐵 / 𝑏][ + / 𝑝][ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) |
| 48 | 3, 47 | anbi12i 733 |
. . 3
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ [𝐵
/ 𝑏][ + / 𝑝][ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
| 49 | 48 | anbi2i 730 |
. 2
⊢ ((𝑅 ∈ CMnd ∧
((mulGrp‘𝑅) ∈
Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))) |
| 50 | | fveq2 6191 |
. . . . 5
⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) |
| 51 | 50 | eleq1d 2686 |
. . . 4
⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ Mnd ↔ (mulGrp‘𝑅) ∈ Mnd)) |
| 52 | | fveq2 6191 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
| 53 | 52, 4 | syl6eqr 2674 |
. . . . 5
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 54 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = (+g‘𝑅)) |
| 55 | 54, 7 | syl6eqr 2674 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = + ) |
| 56 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) |
| 57 | 56, 10 | syl6eqr 2674 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
| 58 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
| 59 | 58, 14 | syl6eqr 2674 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 60 | 59 | sbceq1d 3440 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ([(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) |
| 61 | 57, 60 | sbceqbid 3442 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ([(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) |
| 62 | 55, 61 | sbceqbid 3442 |
. . . . 5
⊢ (𝑟 = 𝑅 → ([(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ + / 𝑝][ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) |
| 63 | 53, 62 | sbceqbid 3442 |
. . . 4
⊢ (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) |
| 64 | 51, 63 | anbi12d 747 |
. . 3
⊢ (𝑟 = 𝑅 → (((mulGrp‘𝑟) ∈ Mnd ∧ [(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))) |
| 65 | | df-srg 18506 |
. . 3
⊢ SRing =
{𝑟 ∈ CMnd ∣
((mulGrp‘𝑟) ∈
Mnd ∧ [(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))} |
| 66 | 64, 65 | elrab2 3366 |
. 2
⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧
((mulGrp‘𝑅) ∈
Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))) |
| 67 | | 3anass 1042 |
. 2
⊢ ((𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))) |
| 68 | 49, 66, 67 | 3bitr4i 292 |
1
⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |