MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rge0srg Structured version   Visualization version   GIF version

Theorem rge0srg 19817
Description: The nonnegative real numbers form a semiring (commutative by subcmn 18242). (Contributed by Thierry Arnoux, 6-Sep-2018.)
Assertion
Ref Expression
rge0srg (ℂflds (0[,)+∞)) ∈ SRing

Proof of Theorem rge0srg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 19768 . . . 4 fld ∈ Ring
2 ringcmn 18581 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
31, 2ax-mp 5 . . 3 fld ∈ CMnd
4 rege0subm 19802 . . 3 (0[,)+∞) ∈ (SubMnd‘ℂfld)
5 eqid 2622 . . . 4 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
65submcmn 18243 . . 3 ((ℂfld ∈ CMnd ∧ (0[,)+∞) ∈ (SubMnd‘ℂfld)) → (ℂflds (0[,)+∞)) ∈ CMnd)
73, 4, 6mp2an 708 . 2 (ℂflds (0[,)+∞)) ∈ CMnd
8 rge0ssre 12280 . . . . 5 (0[,)+∞) ⊆ ℝ
9 ax-resscn 9993 . . . . 5 ℝ ⊆ ℂ
108, 9sstri 3612 . . . 4 (0[,)+∞) ⊆ ℂ
11 1re 10039 . . . . 5 1 ∈ ℝ
12 0le1 10551 . . . . 5 0 ≤ 1
13 ltpnf 11954 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
1411, 13ax-mp 5 . . . . 5 1 < +∞
15 0re 10040 . . . . . 6 0 ∈ ℝ
16 pnfxr 10092 . . . . . 6 +∞ ∈ ℝ*
17 elico2 12237 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
1815, 16, 17mp2an 708 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
1911, 12, 14, 18mpbir3an 1244 . . . 4 1 ∈ (0[,)+∞)
20 ge0mulcl 12285 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
2120rgen2a 2977 . . . 4 𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞)
22 eqid 2622 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2322ringmgp 18553 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
24 cnfldbas 19750 . . . . . . 7 ℂ = (Base‘ℂfld)
2522, 24mgpbas 18495 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
26 cnfld1 19771 . . . . . . 7 1 = (1r‘ℂfld)
2722, 26ringidval 18503 . . . . . 6 1 = (0g‘(mulGrp‘ℂfld))
28 cnfldmul 19752 . . . . . . 7 · = (.r‘ℂfld)
2922, 28mgpplusg 18493 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
3025, 27, 29issubm 17347 . . . . 5 ((mulGrp‘ℂfld) ∈ Mnd → ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,)+∞) ⊆ ℂ ∧ 1 ∈ (0[,)+∞) ∧ ∀𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞))))
311, 23, 30mp2b 10 . . . 4 ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,)+∞) ⊆ ℂ ∧ 1 ∈ (0[,)+∞) ∧ ∀𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞)))
3210, 19, 21, 31mpbir3an 1244 . . 3 (0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld))
33 eqid 2622 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = ((mulGrp‘ℂfld) ↾s (0[,)+∞))
3433submmnd 17354 . . 3 ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) → ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd)
3532, 34ax-mp 5 . 2 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd
36 simpll 790 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)+∞))
3710, 36sseldi 3601 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑥 ∈ ℂ)
38 simplr 792 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
3910, 38sseldi 3601 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑦 ∈ ℂ)
40 simpr 477 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑧 ∈ (0[,)+∞))
4110, 40sseldi 3601 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑧 ∈ ℂ)
4237, 39, 41adddid 10064 . . . . . . 7 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
4337, 39, 41adddird 10065 . . . . . . 7 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
4442, 43jca 554 . . . . . 6 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4544ralrimiva 2966 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → ∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4645ralrimiva 2966 . . . 4 (𝑥 ∈ (0[,)+∞) → ∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4710sseli 3599 . . . . 5 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
4847mul02d 10234 . . . 4 (𝑥 ∈ (0[,)+∞) → (0 · 𝑥) = 0)
4947mul01d 10235 . . . 4 (𝑥 ∈ (0[,)+∞) → (𝑥 · 0) = 0)
5046, 48, 49jca32 558 . . 3 (𝑥 ∈ (0[,)+∞) → (∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)))
5150rgen 2922 . 2 𝑥 ∈ (0[,)+∞)(∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))
525, 24ressbas2 15931 . . . 4 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
5310, 52ax-mp 5 . . 3 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
54 cnfldex 19749 . . . 4 fld ∈ V
55 ovex 6678 . . . 4 (0[,)+∞) ∈ V
565, 22mgpress 18500 . . . 4 ((ℂfld ∈ V ∧ (0[,)+∞) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = (mulGrp‘(ℂflds (0[,)+∞))))
5754, 55, 56mp2an 708 . . 3 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = (mulGrp‘(ℂflds (0[,)+∞)))
58 cnfldadd 19751 . . . . 5 + = (+g‘ℂfld)
595, 58ressplusg 15993 . . . 4 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
6055, 59ax-mp 5 . . 3 + = (+g‘(ℂflds (0[,)+∞)))
615, 28ressmulr 16006 . . . 4 ((0[,)+∞) ∈ V → · = (.r‘(ℂflds (0[,)+∞))))
6255, 61ax-mp 5 . . 3 · = (.r‘(ℂflds (0[,)+∞)))
63 ringmnd 18556 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
641, 63ax-mp 5 . . . 4 fld ∈ Mnd
65 0e0icopnf 12282 . . . 4 0 ∈ (0[,)+∞)
66 cnfld0 19770 . . . . 5 0 = (0g‘ℂfld)
675, 24, 66ress0g 17319 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 0 = (0g‘(ℂflds (0[,)+∞))))
6864, 65, 10, 67mp3an 1424 . . 3 0 = (0g‘(ℂflds (0[,)+∞)))
6953, 57, 60, 62, 68issrg 18507 . 2 ((ℂflds (0[,)+∞)) ∈ SRing ↔ ((ℂflds (0[,)+∞)) ∈ CMnd ∧ ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd ∧ ∀𝑥 ∈ (0[,)+∞)(∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))))
707, 35, 51, 69mpbir3an 1244 1 (ℂflds (0[,)+∞)) ∈ SRing
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  [,)cico 12177  Basecbs 15857  s cress 15858  +gcplusg 15941  .rcmulr 15942  0gc0g 16100  Mndcmnd 17294  SubMndcsubmnd 17334  CMndccmn 18193  mulGrpcmgp 18489  SRingcsrg 18505  Ringcrg 18547  fldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-ico 12181  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-cnfld 19747
This theorem is referenced by:  xrge0slmod  29844  sge0tsms  40597
  Copyright terms: Public domain W3C validator