![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istmd | Structured version Visualization version GIF version |
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
istmd.1 | ⊢ 𝐹 = (+𝑓‘𝐺) |
istmd.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
istmd | ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3796 | . . 3 ⊢ (𝐺 ∈ (Mnd ∩ TopSp) ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp)) | |
2 | 1 | anbi1i 731 | . 2 ⊢ ((𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
3 | fvexd 6203 | . . . 4 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V) | |
4 | simpl 473 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺) | |
5 | 4 | fveq2d 6195 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (+𝑓‘𝑓) = (+𝑓‘𝐺)) |
6 | istmd.1 | . . . . . 6 ⊢ 𝐹 = (+𝑓‘𝐺) | |
7 | 5, 6 | syl6eqr 2674 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (+𝑓‘𝑓) = 𝐹) |
8 | id 22 | . . . . . . . 8 ⊢ (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓)) | |
9 | fveq2 6191 | . . . . . . . . 9 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺)) | |
10 | istmd.2 | . . . . . . . . 9 ⊢ 𝐽 = (TopOpen‘𝐺) | |
11 | 9, 10 | syl6eqr 2674 | . . . . . . . 8 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽) |
12 | 8, 11 | sylan9eqr 2678 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽) |
13 | 12, 12 | oveq12d 6668 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (𝑗 ×t 𝑗) = (𝐽 ×t 𝐽)) |
14 | 13, 12 | oveq12d 6668 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((𝑗 ×t 𝑗) Cn 𝑗) = ((𝐽 ×t 𝐽) Cn 𝐽)) |
15 | 7, 14 | eleq12d 2695 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
16 | 3, 15 | sbcied 3472 | . . 3 ⊢ (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
17 | df-tmd 21876 | . . 3 ⊢ TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)} | |
18 | 16, 17 | elrab2 3366 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
19 | df-3an 1039 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) | |
20 | 2, 18, 19 | 3bitr4i 292 | 1 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 Vcvv 3200 [wsbc 3435 ∩ cin 3573 ‘cfv 5888 (class class class)co 6650 TopOpenctopn 16082 +𝑓cplusf 17239 Mndcmnd 17294 TopSpctps 20736 Cn ccn 21028 ×t ctx 21363 TopMndctmd 21874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-tmd 21876 |
This theorem is referenced by: tmdmnd 21879 tmdtps 21880 tmdcn 21887 istgp2 21895 oppgtmd 21901 symgtgp 21905 submtmd 21908 prdstmdd 21927 nrgtrg 22494 mhmhmeotmd 29973 xrge0tmdOLD 29991 |
Copyright terms: Public domain | W3C validator |