MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp2 Structured version   Visualization version   GIF version

Theorem istgp2 21895
Description: A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tgpsubcn.2 𝐽 = (TopOpen‘𝐺)
tgpsubcn.3 = (-g𝐺)
Assertion
Ref Expression
istgp2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istgp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 21882 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2 tgptps 21884 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
3 tgpsubcn.2 . . . 4 𝐽 = (TopOpen‘𝐺)
4 tgpsubcn.3 . . . 4 = (-g𝐺)
53, 4tgpsubcn 21894 . . 3 (𝐺 ∈ TopGrp → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
61, 2, 53jca 1242 . 2 (𝐺 ∈ TopGrp → (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
7 simp1 1061 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ Grp)
8 grpmnd 17429 . . . . 5 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
983ad2ant1 1082 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ Mnd)
10 simp2 1062 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopSp)
11 eqid 2622 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
12 eqid 2622 . . . . . . . 8 (+g𝐺) = (+g𝐺)
13 eqid 2622 . . . . . . . 8 (invg𝐺) = (invg𝐺)
1473ad2ant1 1082 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp)
15 simp2 1062 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
16 simp3 1063 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺))
1711, 12, 4, 13, 14, 15, 16grpsubinv 17488 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥 ((invg𝐺)‘𝑦)) = (𝑥(+g𝐺)𝑦))
1817mpt2eq3dva 6719 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)))
19 eqid 2622 . . . . . . 7 (+𝑓𝐺) = (+𝑓𝐺)
2011, 12, 19plusffval 17247 . . . . . 6 (+𝑓𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
2118, 20syl6eqr 2674 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) = (+𝑓𝐺))
2211, 3istps 20738 . . . . . . 7 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝐺)))
2310, 22sylib 208 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
2423, 23cnmpt1st 21471 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2523, 23cnmpt2nd 21472 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2611, 13grpinvf 17466 . . . . . . . . . . 11 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
27263ad2ant1 1082 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2827feqmptd 6249 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
29 eqid 2622 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
3011, 4, 13, 29grpinvval2 17498 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = ((0g𝐺) 𝑥))
317, 30sylan 488 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = ((0g𝐺) 𝑥))
3231mpteq2dva 4744 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)))
3328, 32eqtrd 2656 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)))
3411, 29grpidcl 17450 . . . . . . . . . . 11 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
35343ad2ant1 1082 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (0g𝐺) ∈ (Base‘𝐺))
3623, 23, 35cnmptc 21465 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽))
3723cnmptid 21464 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
38 simp3 1063 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3923, 36, 37, 38cnmpt12f 21469 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)) ∈ (𝐽 Cn 𝐽))
4033, 39eqeltrd 2701 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) ∈ (𝐽 Cn 𝐽))
4123, 23, 25, 40cnmpt21f 21475 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4223, 23, 24, 41, 38cnmpt22f 21478 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4321, 42eqeltrrd 2702 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4419, 3istmd 21878 . . . 4 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
459, 10, 43, 44syl3anbrc 1246 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopMnd)
463, 13istgp 21881 . . 3 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ (𝐽 Cn 𝐽)))
477, 45, 40, 46syl3anbrc 1246 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopGrp)
486, 47impbii 199 1 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  w3a 1037   = wceq 1483  wcel 1990  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Basecbs 15857  +gcplusg 15941  TopOpenctopn 16082  0gc0g 16100  +𝑓cplusf 17239  Mndcmnd 17294  Grpcgrp 17422  invgcminusg 17423  -gcsg 17424  TopOnctopon 20715  TopSpctps 20736   Cn ccn 21028   ×t ctx 21363  TopMndctmd 21874  TopGrpctgp 21875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-0g 16102  df-topgen 16104  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-tmd 21876  df-tgp 21877
This theorem is referenced by:  distgp  21903  indistgp  21904  qustgplem  21924  ngptgp  22440  cnfldtgp  22672
  Copyright terms: Public domain W3C validator