MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submtmd Structured version   Visualization version   GIF version

Theorem submtmd 21908
Description: A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypothesis
Ref Expression
subgtgp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
submtmd ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd)

Proof of Theorem submtmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgtgp.h . . . 4 𝐻 = (𝐺s 𝑆)
21submmnd 17354 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
32adantl 482 . 2 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ Mnd)
4 tmdtps 21880 . . . 4 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
5 resstps 20991 . . . 4 ((𝐺 ∈ TopSp ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺s 𝑆) ∈ TopSp)
64, 5sylan 488 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺s 𝑆) ∈ TopSp)
71, 6syl5eqel 2705 . 2 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopSp)
81submbas 17355 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
98adantl 482 . . . . . 6 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝑆 = (Base‘𝐻))
10 eqid 2622 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
111, 10ressplusg 15993 . . . . . . . 8 (𝑆 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g𝐻))
1211adantl 482 . . . . . . 7 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+g𝐺) = (+g𝐻))
1312oveqd 6667 . . . . . 6 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
149, 9, 13mpt2eq123dv 6717 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥𝑆, 𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ (𝑥(+g𝐻)𝑦)))
15 eqid 2622 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2622 . . . . . 6 (+g𝐻) = (+g𝐻)
17 eqid 2622 . . . . . 6 (+𝑓𝐻) = (+𝑓𝐻)
1815, 16, 17plusffval 17247 . . . . 5 (+𝑓𝐻) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ (𝑥(+g𝐻)𝑦))
1914, 18syl6reqr 2675 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+𝑓𝐻) = (𝑥𝑆, 𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
20 eqid 2622 . . . . 5 ((TopOpen‘𝐺) ↾t 𝑆) = ((TopOpen‘𝐺) ↾t 𝑆)
21 eqid 2622 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
22 eqid 2622 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
2321, 22tmdtopon 21885 . . . . . 6 (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2423adantr 481 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2522submss 17350 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2625adantl 482 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
27 eqid 2622 . . . . . . . 8 (+𝑓𝐺) = (+𝑓𝐺)
2822, 10, 27plusffval 17247 . . . . . . 7 (+𝑓𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
2921, 27tmdcn 21887 . . . . . . 7 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3028, 29syl5eqelr 2706 . . . . . 6 (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3130adantr 481 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3220, 24, 26, 20, 24, 26, 31cnmpt2res 21480 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥𝑆, 𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)))
3319, 32eqeltrd 2701 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)))
3415, 17mndplusf 17309 . . . . . 6 (𝐻 ∈ Mnd → (+𝑓𝐻):((Base‘𝐻) × (Base‘𝐻))⟶(Base‘𝐻))
35 frn 6053 . . . . . 6 ((+𝑓𝐻):((Base‘𝐻) × (Base‘𝐻))⟶(Base‘𝐻) → ran (+𝑓𝐻) ⊆ (Base‘𝐻))
363, 34, 353syl 18 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → ran (+𝑓𝐻) ⊆ (Base‘𝐻))
3736, 9sseqtr4d 3642 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → ran (+𝑓𝐻) ⊆ 𝑆)
38 cnrest2 21090 . . . 4 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ ran (+𝑓𝐻) ⊆ 𝑆𝑆 ⊆ (Base‘𝐺)) → ((+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)) ↔ (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
3924, 37, 26, 38syl3anc 1326 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → ((+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)) ↔ (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
4033, 39mpbid 222 . 2 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆)))
411, 21resstopn 20990 . . 3 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
4217, 41istmd 21878 . 2 (𝐻 ∈ TopMnd ↔ (𝐻 ∈ Mnd ∧ 𝐻 ∈ TopSp ∧ (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
433, 7, 40, 42syl3anbrc 1246 1 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wss 3574   × cxp 5112  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Basecbs 15857  s cress 15858  +gcplusg 15941  t crest 16081  TopOpenctopn 16082  +𝑓cplusf 17239  Mndcmnd 17294  SubMndcsubmnd 17334  TopOnctopon 20715  TopSpctps 20736   Cn ccn 21028   ×t ctx 21363  TopMndctmd 21874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-rest 16083  df-topn 16084  df-0g 16102  df-topgen 16104  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-tx 21365  df-tmd 21876
This theorem is referenced by:  subgtgp  21909  nrgtdrg  22497  iistmd  29948
  Copyright terms: Public domain W3C validator