MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istmd Structured version   Visualization version   Unicode version

Theorem istmd 21878
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
istmd.1  |-  F  =  ( +f `  G )
istmd.2  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
istmd  |-  ( G  e. TopMnd 
<->  ( G  e.  Mnd  /\  G  e.  TopSp  /\  F  e.  ( ( J  tX  J )  Cn  J
) ) )

Proof of Theorem istmd
Dummy variables  f 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . 3  |-  ( G  e.  ( Mnd  i^i  TopSp
)  <->  ( G  e. 
Mnd  /\  G  e.  TopSp
) )
21anbi1i 731 . 2  |-  ( ( G  e.  ( Mnd 
i^i  TopSp )  /\  F  e.  ( ( J  tX  J )  Cn  J
) )  <->  ( ( G  e.  Mnd  /\  G  e.  TopSp )  /\  F  e.  ( ( J  tX  J )  Cn  J
) ) )
3 fvexd 6203 . . . 4  |-  ( f  =  G  ->  ( TopOpen
`  f )  e. 
_V )
4 simpl 473 . . . . . . 7  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
f  =  G )
54fveq2d 6195 . . . . . 6  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( +f `  f )  =  ( +f `  G
) )
6 istmd.1 . . . . . 6  |-  F  =  ( +f `  G )
75, 6syl6eqr 2674 . . . . 5  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( +f `  f )  =  F )
8 id 22 . . . . . . . 8  |-  ( j  =  ( TopOpen `  f
)  ->  j  =  ( TopOpen `  f )
)
9 fveq2 6191 . . . . . . . . 9  |-  ( f  =  G  ->  ( TopOpen
`  f )  =  ( TopOpen `  G )
)
10 istmd.2 . . . . . . . . 9  |-  J  =  ( TopOpen `  G )
119, 10syl6eqr 2674 . . . . . . . 8  |-  ( f  =  G  ->  ( TopOpen
`  f )  =  J )
128, 11sylan9eqr 2678 . . . . . . 7  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
j  =  J )
1312, 12oveq12d 6668 . . . . . 6  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( j  tX  j
)  =  ( J 
tX  J ) )
1413, 12oveq12d 6668 . . . . 5  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( ( j  tX  j )  Cn  j
)  =  ( ( J  tX  J )  Cn  J ) )
157, 14eleq12d 2695 . . . 4  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( ( +f `  f )  e.  ( ( j  tX  j
)  Cn  j )  <-> 
F  e.  ( ( J  tX  J )  Cn  J ) ) )
163, 15sbcied 3472 . . 3  |-  ( f  =  G  ->  ( [. ( TopOpen `  f )  /  j ]. ( +f `  f
)  e.  ( ( j  tX  j )  Cn  j )  <->  F  e.  ( ( J  tX  J )  Cn  J
) ) )
17 df-tmd 21876 . . 3  |- TopMnd  =  {
f  e.  ( Mnd 
i^i  TopSp )  |  [. ( TopOpen `  f )  /  j ]. ( +f `  f
)  e.  ( ( j  tX  j )  Cn  j ) }
1816, 17elrab2 3366 . 2  |-  ( G  e. TopMnd 
<->  ( G  e.  ( Mnd  i^i  TopSp )  /\  F  e.  ( ( J  tX  J )  Cn  J ) ) )
19 df-3an 1039 . 2  |-  ( ( G  e.  Mnd  /\  G  e.  TopSp  /\  F  e.  ( ( J  tX  J )  Cn  J
) )  <->  ( ( G  e.  Mnd  /\  G  e.  TopSp )  /\  F  e.  ( ( J  tX  J )  Cn  J
) ) )
202, 18, 193bitr4i 292 1  |-  ( G  e. TopMnd 
<->  ( G  e.  Mnd  /\  G  e.  TopSp  /\  F  e.  ( ( J  tX  J )  Cn  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435    i^i cin 3573   ` cfv 5888  (class class class)co 6650   TopOpenctopn 16082   +fcplusf 17239   Mndcmnd 17294   TopSpctps 20736    Cn ccn 21028    tX ctx 21363  TopMndctmd 21874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-tmd 21876
This theorem is referenced by:  tmdmnd  21879  tmdtps  21880  tmdcn  21887  istgp2  21895  oppgtmd  21901  symgtgp  21905  submtmd  21908  prdstmdd  21927  nrgtrg  22494  mhmhmeotmd  29973  xrge0tmdOLD  29991
  Copyright terms: Public domain W3C validator